2ZAM

Crystal structure of mouse SKD1/VPS4B apo-form


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 3.5 Å
  • R-Value Free: 0.304 
  • R-Value Work: 0.250 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Nucleotide-dependent conformational changes and assembly of the AAA ATPase SKD1/VPS4B

Inoue, M.Kamikubo, H.Kataoka, M.Kato, R.Yoshimori, T.Wakatsuki, S.Kawasaki, M.

(2008) Traffic 9: 2180-2189

  • DOI: 10.1111/j.1600-0854.2008.00831.x
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • SKD1/VPS4B belongs to the adenosine triphosphatases associated with diverse cellular activities (AAA) family and regulates multivesicular body (MVB) biogenesis. SKD1 changes its oligomeric state during the ATPase cycle and subsequently releases endos ...

    SKD1/VPS4B belongs to the adenosine triphosphatases associated with diverse cellular activities (AAA) family and regulates multivesicular body (MVB) biogenesis. SKD1 changes its oligomeric state during the ATPase cycle and subsequently releases endosomal sorting complex required for transport (ESCRT) complexes from endosomes during the formation of MVBs. In this study, we describe domain motions in monomeric SKD1 on ATP and ADP binding. Nucleotides bind between the alpha/beta and the alpha-helical domains of SKD1, inducing a approximately 20 degrees domain rotation and closure of the binding site, which are similar to the changes observed in the AAA+ ATPase, HslU. Gel filtration and small-angle X-ray scattering experiments showed that the ATP-bound form of SKD1 oligomerizes in solution, whereas ADP-bound and apo forms of SKD1 exist as monomers, even though the conformations of the ADP- and ATP-bound forms are nearly identical. Nucleotide-bound SKD1 structures are compatible with a hexameric ring arrangement reminiscent of the AAA ATPase p97 D1 ring. In the hexameric ring model of SKD1, Arg290 from a neighboring molecule binds to the gamma-phosphate of ATP, which promotes oligomerization of the ATP-bound form. ATP hydrolysis would eliminate this interaction and subsequent nucleotide release causes the domains to rotate, which together lead to the disassembly of the SKD1 oligomer.


    Organizational Affiliation

    Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Vacuolar protein sorting-associating protein 4B
A
444Mus musculusMutation(s): 0 
Gene Names: Vps4b (Skd1)
EC: 3.6.4.6
Find proteins for P46467 (Mus musculus)
Go to UniProtKB:  P46467
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 3.5 Å
  • R-Value Free: 0.304 
  • R-Value Work: 0.250 
  • Space Group: P 65
Unit Cell:
Length (Å)Angle (°)
a = 80.631α = 90.00
b = 80.631β = 90.00
c = 135.521γ = 120.00
Software Package:
Software NamePurpose
SCALEPACKdata scaling
MOLREPphasing
CNSrefinement
HKL-2000data collection
DENZOdata reduction

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2008-10-07
    Type: Initial release
  • Version 1.1: 2011-07-13
    Type: Version format compliance
  • Version 1.2: 2014-01-22
    Type: Database references