2YH1

Model of human U2AF65 tandem RRM1 and RRM2 domains with eight-site uridine binding


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 125 
  • Conformers Submitted: 10 
  • Selection Criteria: LOWEST ENERGY 

wwPDB Validation 3D Report Full Report


This is version 1.1 of the entry. See complete history

Literature

Multi-Domain Conformational Selection Underlies Pre-Mrna Splicing Regulation by U2Af

Mackereth, C.D.Madl, T.Bonnal, S.Simon, B.Zanier, K.Gasch, A.Rybin, V.Valcarcel, J.Sattler, M.

(2011) Nature 475: 408

  • DOI: 10.1038/nature10171
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • Many cellular functions involve multi-domain proteins, which are composed of structurally independent modules connected by flexible linkers. Although it is often well understood how a given domain recognizes a cognate oligonucleotide or peptide motif ...

    Many cellular functions involve multi-domain proteins, which are composed of structurally independent modules connected by flexible linkers. Although it is often well understood how a given domain recognizes a cognate oligonucleotide or peptide motif, the dynamic interaction of multiple domains in the recognition of these ligands remains to be characterized. Here we have studied the molecular mechanisms of the recognition of the 3'-splice-site-associated polypyrimidine tract RNA by the large subunit of the human U2 snRNP auxiliary factor (U2AF65) as a key early step in pre-mRNA splicing. We show that the tandem RNA recognition motif domains of U2AF65 adopt two remarkably distinct domain arrangements in the absence or presence of a strong (that is, high affinity) polypyrimidine tract. Recognition of sequence variations in the polypyrimidine tract RNA involves a population shift between these closed and open conformations. The equilibrium between the two conformations functions as a molecular rheostat that quantitatively correlates the natural variations in polypyrimidine tract nucleotide composition, length and functional strength to the efficiency to recruit U2 snRNP to the intron during spliceosome assembly. Mutations that shift the conformational equilibrium without directly affecting RNA binding modulate splicing activity accordingly. Similar mechanisms of cooperative multi-domain conformational selection may operate more generally in the recognition of degenerate nucleotide or amino acid motifs by multi-domain proteins.


    Related Citations: 
    • Structural Basis for Polypyrimidine Tract Recognition by the Essential Pre-Mrna Splicing Factor U2Af65.
      Sickmier, E.A.,Frato, K.E.,Shen, H.,Paranawithana, S.R.,Green, M.R.,Kielkopf, C.L.
      (2006) Mol.Cell 23: 49


    Organizational Affiliation

    Institute of Structural Biology, Helmholtz Zentrum M├╝nchen, Ingolst├Ądter Landstrasse 1, 85764 Neuherberg, Germany.




Macromolecules

Find similar proteins by: Sequence  |  Structure


Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
SPLICING FACTOR U2AF 65 KDA SUBUNIT
A
198Homo sapiensMutation(s): 0 
Gene Names: U2AF2 (U2AF65)
Find proteins for P26368 (Homo sapiens)
Go to Gene View: U2AF2
Go to UniProtKB:  P26368
Entity ID: 2
MoleculeChainsLengthOrganism
5'-R(*UP*UP*UP*UP*UP*UP*UP*UP*UP)-3'B9Homo sapiens
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 125 
  • Conformers Submitted: 10 
  • Selection Criteria: LOWEST ENERGY 
  • Olderado: 2YH1 Olderado

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2011-07-20
    Type: Initial release
  • Version 1.1: 2011-07-27
    Type: Atomic model, Database references, Other