2XLS

Joint-functions of protein residues and NADP(H) in oxygen-activation by flavin-containing monooxygenase: Asn78Lys mutant


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 3 Å
  • R-Value Free: 0.211 
  • R-Value Work: 0.182 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Joint-Functions of Protein Residues and Nadp(H) in Oxygen-Activation by Flavin-Containing Monooxygenase

Orru, R.Fraaije, M.W.Mattevi, A.

(2010) J.Biol.Chem. 285: 35021

  • DOI: 10.1074/jbc.M110.161372
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • The reactivity of flavoenzymes with dioxygen is at the heart of a number of biochemical reactions with far reaching implications for cell physiology and pathology. Flavin-containing monooxygenases are an attractive model system to study flavin-mediat ...

    The reactivity of flavoenzymes with dioxygen is at the heart of a number of biochemical reactions with far reaching implications for cell physiology and pathology. Flavin-containing monooxygenases are an attractive model system to study flavin-mediated oxygenation. In these enzymes, the NADP(H) cofactor is essential for stabilizing the flavin intermediate, which activates dioxygen and makes it ready to react with the substrate undergoing oxygenation. Our studies combine site-directed mutagenesis with the usage of NADP(+) analogues to dissect the specific roles of the cofactors and surrounding protein matrix. The highlight of this "double-engineering" approach is that subtle alterations in the hydrogen bonding and stereochemical environment can drastically alter the efficiency and outcome of the reaction with oxygen. This is illustrated by the seemingly marginal replacement of an Asn to Ser in the oxygen-reacting site, which inactivates the enzyme by effectively converting it into an oxidase. These data rationalize the effect of mutations that cause enzyme deficiency in patients affected by the fish odor syndrome. A crucial role of NADP(+) in the oxygenation reaction is to shield the reacting flavin N5 atom by H-bond interactions. A Tyr residue functions as backdoor that stabilizes this crucial binding conformation of the nicotinamide cofactor. A general concept emerging from this analysis is that the two alternative pathways of flavoprotein-oxygen reactivity (oxidation versus monooxygenation) are predicted to have very similar activation barriers. The necessity of fine tuning the hydrogen-bonding, electrostatics, and accessibility of the flavin will represent a challenge for the design and development of oxidases and monoxygenases for biotechnological applications.


    Organizational Affiliation

    Department of Genetics and Microbiology, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
FLAVIN-CONTAINING MONOOXYGENASE
A, B, C, D
461Methylophaga aminisulfidivoransMutations: K78N
Find proteins for Q83XK4 (Methylophaga aminisulfidivorans)
Go to UniProtKB:  Q83XK4
Small Molecules
Ligands 4 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
EPE
Query on EPE

Download SDF File 
Download CCD File 
A, B, D
4-(2-HYDROXYETHYL)-1-PIPERAZINE ETHANESULFONIC ACID
HEPES
C8 H18 N2 O4 S
JKMHFZQWWAIEOD-UHFFFAOYSA-N
 Ligand Interaction
FAD
Query on FAD

Download SDF File 
Download CCD File 
A, B, C, D
FLAVIN-ADENINE DINUCLEOTIDE
C27 H33 N9 O15 P2
VWWQXMAJTJZDQX-UYBVJOGSSA-N
 Ligand Interaction
NAP
Query on NAP

Download SDF File 
Download CCD File 
A, B, C, D
NADP NICOTINAMIDE-ADENINE-DINUCLEOTIDE PHOSPHATE
2'-MONOPHOSPHOADENOSINE 5'-DIPHOSPHORIBOSE
C21 H28 N7 O17 P3
XJLXINKUBYWONI-NNYOXOHSSA-N
 Ligand Interaction
PEG
Query on PEG

Download SDF File 
Download CCD File 
C
DI(HYDROXYETHYL)ETHER
C4 H10 O3
MTHSVFCYNBDYFN-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 3 Å
  • R-Value Free: 0.211 
  • R-Value Work: 0.182 
  • Space Group: P 61
Unit Cell:
Length (Å)Angle (°)
a = 219.785α = 90.00
b = 219.785β = 90.00
c = 131.226γ = 120.00
Software Package:
Software NamePurpose
SCALAdata scaling
REFMACrefinement
MOSFLMdata reduction
PHASERphasing

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2010-09-15
    Type: Initial release
  • Version 1.1: 2011-05-08
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Version format compliance