2XJQ

X-ray structure of the N-terminal domain of the flocculin Flo5 from Saccharomyces cerevisiae


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.35 Å
  • R-Value Free: 0.178 
  • R-Value Work: 0.142 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Structural Basis of Flocculin-Mediated Social Behavior in Yeast

Veelders, M.Brueckner, S.Ott, D.Unverzagt, C.Moesch, H.-U.Essen, L.-O.

(2010) Proc.Natl.Acad.Sci.USA 107: 22511

  • DOI: 10.1073/pnas.1013210108
  • Primary Citation of Related Structures:  2XJP, 2XJR, 2XJS, 2XJT, 2XJU, 2XJV

  • PubMed Abstract: 
  • In the budding yeast Saccharomyces cerevisiae, self-recognition and the thereby promoted aggregation of thousands of cells into protective flocs is mediated by a family of cell-surface adhesins, the flocculins (Flo). Based on this social behavior FLO ...

    In the budding yeast Saccharomyces cerevisiae, self-recognition and the thereby promoted aggregation of thousands of cells into protective flocs is mediated by a family of cell-surface adhesins, the flocculins (Flo). Based on this social behavior FLO genes fulfill the definition of "greenbeard" genes, which direct cooperation toward other carriers of the same gene. The process of flocculation plays an eminent role in the food industry for the production of beer and wine. However, the precise mode of flocculin-mediated surface recognition and the exact structure of cognate ligands have remained elusive. Here, we present structures of the adhesion domain of a flocculin complexed to its cognate ligands derived from yeast high-mannose oligosaccharides at resolutions up to 0.95 Å. Besides a PA14-like architecture, the Flo5A domain reveals a previously undescribed lectin fold that utilizes a unique DcisD calcium-binding motif for carbohydrate binding and that is widely spread among pro- and eukaryotes. Given the high abundance of high-mannose oligosaccharides in yeast cell walls, the Flo5A structure suggests a model for recognition, where social non-self- instead of unsocial self-interactions are favored.


    Organizational Affiliation

    Department of Chemistry/Biochemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, D-35032 Marburg, Germany.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
FLOCCULATION PROTEIN FLO5
A
258Saccharomyces cerevisiae (strain ATCC 204508 / S288c)Gene Names: FLO5
Find proteins for P38894 (Saccharomyces cerevisiae (strain ATCC 204508 / S288c))
Go to UniProtKB:  P38894
Small Molecules
Ligands 3 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
NA
Query on NA

Download SDF File 
Download CCD File 
A
SODIUM ION
Na
FKNQFGJONOIPTF-UHFFFAOYSA-N
 Ligand Interaction
CL
Query on CL

Download SDF File 
Download CCD File 
A
CHLORIDE ION
Cl
VEXZGXHMUGYJMC-UHFFFAOYSA-M
 Ligand Interaction
GOL
Query on GOL

Download SDF File 
Download CCD File 
A
GLYCEROL
GLYCERIN; PROPANE-1,2,3-TRIOL
C3 H8 O3
PEDCQBHIVMGVHV-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.35 Å
  • R-Value Free: 0.178 
  • R-Value Work: 0.142 
  • Space Group: P 21 21 21
Unit Cell:
Length (Å)Angle (°)
a = 46.270α = 90.00
b = 61.580β = 90.00
c = 106.010γ = 90.00
Software Package:
Software NamePurpose
REFMACphasing
XSCALEdata scaling
XDSdata reduction
REFMACrefinement

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2010-12-15
    Type: Initial release
  • Version 1.1: 2011-05-08
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Version format compliance