2XJK

Monomeric Human Cu,Zn Superoxide dismutase


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.45 Å
  • R-Value Free: 0.199 
  • R-Value Work: 0.166 
  • R-Value Observed: 0.168 

wwPDB Validation 3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Folding Catalysis by Transient Coordination of Zn2+ to the Cu Ligands of the Als-Associated Enzyme Cu/Zn Superoxide Dismutase 1.

Leinartaite, L.Saraboji, K.Nordlund, A.Logan, D.T.Oliveberg, M.

(2010) J Am Chem Soc 132: 13495

  • DOI: 10.1021/ja1057136
  • Primary Citation of Related Structures:  
    2XJL, 2XJK

  • PubMed Abstract: 
  • How coordination of metal ions modulates protein structures is not only important for elucidating biological function but has also emerged as a key determinant in protein turnover and protein-misfolding diseases. In this study, we show that the coord ...

    How coordination of metal ions modulates protein structures is not only important for elucidating biological function but has also emerged as a key determinant in protein turnover and protein-misfolding diseases. In this study, we show that the coordination of Zn(2+) to the ALS-associated enzyme Cu/Zn superoxide dismutase (SOD1) is directly controlled by the protein's folding pathway. Zn(2+) first catalyzes the folding reaction by coordinating transiently to the Cu ligands of SOD1, which are all contained within the folding nucleus. Then, after the global folding transition has commenced, the Zn(2+) ion transfers to the higher affinity Zn site, which structures only very late in the folding process. Here it remains dynamically coordinated with an off rate of ∼10(-5) s(-1). This relatively rapid equilibration of metals in and out of the SOD1 structure provides a simple explanation for how the exceptionally long lifetime, >100 years, of holoSOD1 is still compatible with cellular turnover: if a dissociated Zn(2+) ion is prevented from rebinding to the SOD1 structure then the lifetime of the protein is reduced to a just a few hours.


    Related Citations: 
    • Functional Features Cause Misfolding of the Als-Provoking Enzyme Sod1.
      Nordlund, A., Leinartaite, L., Saraboji, K., Aisenbrey, C., Grobner, G., Zetterstrom, P., Danielsson, J., Logan, D.T., Oliveberg, M.
      (2009) Proc Natl Acad Sci U S A 106: 9667

    Organizational Affiliation

    Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
SUPEROXIDE DISMUTASE [CU-ZN]A153Homo sapiensMutation(s): 4 
Gene Names: SOD1
EC: 1.15.1.1
Find proteins for P00441 (Homo sapiens)
Explore P00441 
Go to UniProtKB:  P00441
NIH Common Fund Data Resources
PHAROS  P00441
Protein Feature View
Expand
 ( Mouse scroll to zoom / Hold left click to move )
  • Reference Sequence
Small Molecules
Ligands 2 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
ZN
Query on ZN

Download CCD File 
A
ZINC ION
Zn
PTFCDOFLOPIGGS-UHFFFAOYSA-N
 Ligand Interaction
CU
Query on CU

Download CCD File 
A
COPPER (II) ION
Cu
JPVYNHNXODAKFH-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.45 Å
  • R-Value Free: 0.199 
  • R-Value Work: 0.166 
  • R-Value Observed: 0.168 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 35.16α = 90
b = 49.48β = 90
c = 80.44γ = 90
Software Package:
Software NamePurpose
REFMACrefinement
XDSdata reduction
XDSdata scaling
PHASERphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2010-09-01
    Type: Initial release
  • Version 1.1: 2011-05-08
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2018-01-17
    Changes: Data collection