2WT8

Structure of the N-terminal BRCT domain of human microcephalin (Mcph1)


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.60 Å
  • R-Value Free: 0.222 
  • R-Value Work: 0.190 
  • R-Value Observed: 0.192 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

A Pocket on the Surface of the N-Terminal Brct Domain of Mcph1 is Required to Prevent Abnormal Chromosome Condensation.

Richards, M.W.Leung, J.W.C.Roe, S.M.Chen, J.Bayliss, R.

(2010) J Mol Biol 395: 908

  • DOI: 10.1016/j.jmb.2009.11.029
  • Primary Citation of Related Structures:  
    2WT8

  • PubMed Abstract: 
  • Mcph1 is mutated in autosomal recessive primary microcephaly and premature chromosome condensation (PCC) syndrome. Increased chromosome condensation is a common feature of cells isolated from patients afflicted with either disease. Normal cells depleted ...

    Mcph1 is mutated in autosomal recessive primary microcephaly and premature chromosome condensation (PCC) syndrome. Increased chromosome condensation is a common feature of cells isolated from patients afflicted with either disease. Normal cells depleted of Mcph1 also exhibit PCC phenotype. Human Mcph1 contains three BRCA1-carboxyl terminal (BRCT) domains, the first of which (Mcph1N) is necessary for the prevention of PCC. The only known disease-associated missense mutation in Mcph1 resides in this domain (T27R). We have determined the X-ray crystal structure of human Mcph1N to 1.6 A resolution. Compared with other BRCT domain structures, the most striking differences are an elongated, ordered beta1-alpha1 loop and an adjacent hydrophobic pocket. This pocket is in the equivalent structural position to the phosphate binding site of BRCT domains that recognize phospho-proteins, although the phosphate-binding residues are absent in Mcph1N. Mutations in the pocket abrogate the ability of full-length Mcph1 to rescue the PCC phenotype of Mcph1(-/-) mouse embryonic fibroblast cells, suggesting that it forms an essential part of a protein-protein interaction site necessary to prevent PCC.


    Organizational Affiliation

    Section of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
MICROCEPHALIN ABCD97Homo sapiensMutation(s): 0 
Gene Names: MCPH1
Find proteins for Q8NEM0 (Homo sapiens)
Explore Q8NEM0 
Go to UniProtKB:  Q8NEM0
NIH Common Fund Data Resources
PHAROS:  Q8NEM0
Protein Feature View
Expand
  • Reference Sequence
Small Molecules
Ligands 2 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
ACT
Query on ACT

Download Ideal Coordinates CCD File 
A, C
ACETATE ION
C2 H3 O2
QTBSBXVTEAMEQO-UHFFFAOYSA-M
 Ligand Interaction
CL
Query on CL

Download Ideal Coordinates CCD File 
A
CHLORIDE ION
Cl
VEXZGXHMUGYJMC-UHFFFAOYSA-M
 Ligand Interaction
Modified Residues  1 Unique
IDChainsTypeFormula2D DiagramParent
MSE
Query on MSE
A,B,C,DL-PEPTIDE LINKINGC5 H11 N O2 SeMET
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.60 Å
  • R-Value Free: 0.222 
  • R-Value Work: 0.190 
  • R-Value Observed: 0.192 
  • Space Group: P 1 21 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 80.955α = 90
b = 34.215β = 113.53
c = 84.23γ = 90
Software Package:
Software NamePurpose
PHENIXrefinement
PHENIXphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2009-12-01
    Type: Initial release
  • Version 1.1: 2011-05-08
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance