2W82

The structure of ArdA


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.8 Å
  • R-Value Free: 0.249 
  • R-Value Work: 0.207 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Extensive DNA Mimicry by the Arda Anti-Restriction Protein and its Role in the Spread of Antibiotic Resistance.

Mcmahon, S.A.Roberts, G.A.Johnson, K.A.Cooper, L.P.Liu, H.White, J.H.Carter, L.G.Sanghvi, B.Oke, M.Walkinshaw, M.D.Blakely, G.Naismith, J.H.Dryden, D.T.F.

(2009) Nucleic Acids Res. 37: 4887

  • DOI: 10.1093/nar/gkp478

  • PubMed Abstract: 
  • The ardA gene, found in many prokaryotes including important pathogenic species, allows associated mobile genetic elements to evade the ubiquitous Type I DNA restriction systems and thereby assist the spread of resistance genes in bacterial populatio ...

    The ardA gene, found in many prokaryotes including important pathogenic species, allows associated mobile genetic elements to evade the ubiquitous Type I DNA restriction systems and thereby assist the spread of resistance genes in bacterial populations. As such, ardA contributes to a major healthcare problem. We have solved the structure of the ArdA protein from the conjugative transposon Tn916 and find that it has a novel extremely elongated curved cylindrical structure with defined helical grooves. The high density of aspartate and glutamate residues on the surface follow a helical pattern and the whole protein mimics a 42-base pair stretch of B-form DNA making ArdA by far the largest DNA mimic known. Each monomer of this dimeric structure comprises three alpha-beta domains, each with a different fold. These domains have the same fold as previously determined proteins possessing entirely different functions. This DNA mimicry explains how ArdA can bind and inhibit the Type I restriction enzymes and we demonstrate that 6 different ardA from pathogenic bacteria can function in Escherichia coli hosting a range of different Type I restriction systems.


    Organizational Affiliation

    Centre for Biomolecular Science, The University, St Andrews KY16 9ST, UK.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
ORF18
A, B, C, D
165Enterococcus faecalisMutation(s): 0 
Find proteins for Q47730 (Enterococcus faecalis)
Go to UniProtKB:  Q47730
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.8 Å
  • R-Value Free: 0.249 
  • R-Value Work: 0.207 
  • Space Group: P 21 21 21
Unit Cell:
Length (Å)Angle (°)
a = 63.810α = 90.00
b = 103.440β = 90.00
c = 172.980γ = 90.00
Software Package:
Software NamePurpose
REFMACrefinement
XDSdata scaling
XDSdata reduction

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2009-01-27
    Type: Initial release
  • Version 1.1: 2011-07-13
    Type: Advisory, Version format compliance
  • Version 1.2: 2017-08-30
    Type: Data collection