2VBF

The holostructure of the branched-chain keto acid decarboxylase (KdcA) from Lactococcus lactis


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.6 Å
  • R-Value Free: 0.200 
  • R-Value Work: 0.163 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Crystal Structure of the Branched-Chain Keto Acid Decarboxylase (Kdca) from Lactococcus Lactis Provides Insights Into the Structural Basis for the Chemo- and Enantioselective Carboligation Reaction

Berthold, C.L.Gocke, D.Wood, M.D.Leeper, F.Pohl, M.Schneider, G.

(2007) Acta Crystallogr.,Sect.D 63: 1217

  • DOI: 10.1107/S0907444907050433
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • The thiamin diphosphate (ThDP) dependent branched-chain keto acid decarboxylase (KdcA) from Lactococcus lactis catalyzes the decarboxylation of 3-methyl-2-oxobutanoic acid to 3-methylpropanal (isobutyraldehyde) and CO2. The enzyme is also able to cat ...

    The thiamin diphosphate (ThDP) dependent branched-chain keto acid decarboxylase (KdcA) from Lactococcus lactis catalyzes the decarboxylation of 3-methyl-2-oxobutanoic acid to 3-methylpropanal (isobutyraldehyde) and CO2. The enzyme is also able to catalyze carboligation reactions with an exceptionally broad substrate range, a feature that makes KdcA a potentially valuable biocatalyst for C-C bond formation, in particular for the enzymatic synthesis of diversely substituted 2-hydroxyketones with high enantioselectivity. The crystal structures of recombinant holo-KdcA and of a complex with an inhibitory ThDP analogue mimicking a reaction intermediate have been determined to resolutions of 1.6 and 1.8 A, respectively. KdcA shows the fold and cofactor-protein interactions typical of thiamin-dependent enzymes. In contrast to the tetrameric assembly displayed by most other ThDP-dependent decarboxylases of known structure, KdcA is a homodimer. The crystal structures provide insights into the structural basis of substrate selectivity and stereoselectivity of the enzyme and thus are suitable as a framework for the redesign of the substrate profile in carboligation reactions.


    Organizational Affiliation

    Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17177 Stockholm, Sweden.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
BRANCHED-CHAIN ALPHA-KETOACID DECARBOXYLASE
A, B
570Lactococcus lactisMutation(s): 0 
Gene Names: kdcA
Find proteins for Q6QBS4 (Lactococcus lactis)
Go to UniProtKB:  Q6QBS4
Small Molecules
Ligands 2 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
TPP
Query on TPP

Download SDF File 
Download CCD File 
B
THIAMINE DIPHOSPHATE
C12 H19 N4 O7 P2 S
AYEKOFBPNLCAJY-UHFFFAOYSA-O
 Ligand Interaction
MG
Query on MG

Download SDF File 
Download CCD File 
B
MAGNESIUM ION
Mg
JLVVSXFLKOJNIY-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.6 Å
  • R-Value Free: 0.200 
  • R-Value Work: 0.163 
  • Space Group: P 21 21 21
Unit Cell:
Length (Å)Angle (°)
a = 65.603α = 90.00
b = 108.421β = 90.00
c = 146.593γ = 90.00
Software Package:
Software NamePurpose
MOLREPphasing
SCALAdata scaling
REFMACrefinement
MOSFLMdata reduction

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2007-12-18
    Type: Initial release
  • Version 1.1: 2011-05-08
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Version format compliance