2VA8

DNA Repair Helicase Hel308


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.3 Å
  • R-Value Free: 0.259 
  • R-Value Work: 0.212 

wwPDB Validation 3D Report Full Report


This is version 1.3 of the entry. See complete history

Literature

Structure of the DNA Repair Helicase Hel308 Reveals DNA Binding and Autoinhibitory Domains.

Richards, J.D.Johnson, K.A.Liu, H.Mcrobbie, A.M.Mcmahon, S.Oke, M.Carter, L.Naismith, J.H.White, M.F.

(2008) J.Biol.Chem. 283: 5118

  • DOI: 10.1074/jbc.M707548200

  • PubMed Abstract: 
  • Hel308 is a superfamily 2 helicase conserved in eukaryotes and archaea. It is thought to function in the early stages of recombination following replication fork arrest and has a specificity for removal of the lagging strand in model replication fork ...

    Hel308 is a superfamily 2 helicase conserved in eukaryotes and archaea. It is thought to function in the early stages of recombination following replication fork arrest and has a specificity for removal of the lagging strand in model replication forks. A homologous helicase constitutes the N-terminal domain of human DNA polymerase Q. The Drosophila homologue mus301 is implicated in double strand break repair and meiotic recombination. We have solved the high resolution crystal structure of Hel308 from the crenarchaeon Sulfolobus solfataricus, revealing a five-domain structure with a central pore lined with essential DNA binding residues. The fifth domain is shown to act as an autoinhibitory domain or molecular brake, clamping the single-stranded DNA extruded through the central pore of the helicase structure to limit the helicase activity of the enzyme. This provides an elegant mechanism to tune the processivity of the enzyme to its functional role. Hel308 can displace streptavidin from a biotinylated DNA molecule, and this activity is only partially inhibited when the DNA is pre-bound with abundant DNA-binding proteins RPA or Alba1, whereas pre-binding with the recombinase RadA has no effect on activity. These data suggest that one function of the enzyme may be in the removal of bound proteins at stalled replication forks and recombination intermediates.


    Organizational Affiliation

    Centre for Biomolecular Sciences, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9ST, Scotland.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
SKI2-TYPE HELICASE
A, B
715N/AMutation(s): 0 
Protein Feature View is not available: No corresponding UniProt sequence found.
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
SO4
Query on SO4

Download SDF File 
Download CCD File 
A, B
SULFATE ION
O4 S
QAOWNCQODCNURD-UHFFFAOYSA-L
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.3 Å
  • R-Value Free: 0.259 
  • R-Value Work: 0.212 
  • Space Group: P 1 21 1
Unit Cell:
Length (Å)Angle (°)
a = 61.657α = 90.00
b = 138.083β = 94.65
c = 107.551γ = 90.00
Software Package:
Software NamePurpose
MOSFLMdata reduction
SCALEPACKdata scaling
REFMACrefinement

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2008-01-15
    Type: Initial release
  • Version 1.1: 2011-07-13
    Type: Advisory, Version format compliance
  • Version 1.2: 2014-12-31
    Type: Data collection, Derived calculations
  • Version 1.3: 2019-10-16
    Type: Data collection, Experimental preparation, Other