2V82

KDPGal complexed to KDPGal


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.10 Å
  • R-Value Free: 0.247 
  • R-Value Work: 0.215 
  • R-Value Observed: 0.216 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


This is version 1.4 of the entry. See complete history


Literature

Characterization and crystal structure of Escherichia coli KDPGal aldolase.

Walters, M.J.Srikannathasan, V.McEwan, A.R.Naismith, J.H.Fierke, C.A.Toone, E.J.

(2008) Bioorg Med Chem 16: 710-720

  • DOI: https://doi.org/10.1016/j.bmc.2007.10.043
  • Primary Citation of Related Structures:  
    2V81, 2V82

  • PubMed Abstract: 

    2-Keto-3-deoxy-6-phosphogluconate (KDPG) and 2-keto-3-deoxy-6-phosphogalactonate (KDPGal) aldolases catalyze an identical reaction differing in substrate specificity in only the configuration of a single stereocenter. However, the proteins show little sequence homology at the amino acid level. Here we investigate the determinants of substrate selectivity of these enzymes. The Escherichia coli KDPGal aldolase gene, cloned into a T7 expression vector and overexpressed in E. coli, catalyzes retro-aldol cleavage of the natural substrate, KDPGal, with values of k(cat)/K(M) and k(cat) of 1.9x10(4)M(-1)s(-1) and 4s(-1), respectively. In the synthetic direction, KDPGal aldolase efficiently catalyzes an aldol addition using a limited number of aldehyde substrates, including d-glyceraldehyde-3-phosphate (natural substrate), d-glyceraldehyde, glycolaldehyde, and 2-pyridinecarboxaldehyde. A preparative scale reaction between 2-pyridinecarboxaldehyde and pyruvate catalyzed by KDPGal aldolase produced the aldol adduct of the R stereochemistry in >99.7% ee, a result complementary to that observed using the related KDPG aldolase. The native crystal structure has been solved to a resolution of 2.4A and displays the same (alpha/beta)(8) topology, as KDPG aldolase. We have also determined a 2.1A structure of a Schiff base complex between the enzyme and its substrate. This model predicts that a single amino acid change, T161 in KDPG aldolase to V154 in KDPGal aldolase, plays an important role in determining the stereochemical course of enzyme catalysis and this prediction was borne out by site-directed mutagenesis studies. However, additional changes in the enzyme sequence are required to prepare an enzyme with both high catalytic efficiency and altered stereochemistry.


  • Organizational Affiliation

    Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
2-DEHYDRO-3-DEOXY-6-PHOSPHOGALACTONATE ALDOLASE212Escherichia coliMutation(s): 0 
EC: 4.1.2.21
UniProt
Find proteins for Q6BF16 (Escherichia coli (strain K12))
Explore Q6BF16 
Go to UniProtKB:  Q6BF16
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ6BF16
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
KDP
Query on KDP

Download Ideal Coordinates CCD File 
B [auth A]2-KETO-DEOXY-GALACTOSE
C6 H11 O9 P
OVPRPPOVAXRCED-NQXXGFSBSA-N
Modified Residues  1 Unique
IDChains TypeFormula2D DiagramParent
MSE
Query on MSE
A
L-PEPTIDE LINKINGC5 H11 N O2 SeMET
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.10 Å
  • R-Value Free: 0.247 
  • R-Value Work: 0.215 
  • R-Value Observed: 0.216 
  • Space Group: H 3
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 104.6α = 90
b = 104.6β = 90
c = 74.21γ = 120
Software Package:
Software NamePurpose
REFMACrefinement
MOSFLMdata reduction
SCALAdata scaling

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2007-08-14
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Advisory, Version format compliance
  • Version 1.2: 2018-03-28
    Changes: Database references
  • Version 1.3: 2023-12-13
    Changes: Data collection, Database references, Derived calculations, Other, Refinement description
  • Version 1.4: 2024-10-23
    Changes: Structure summary