2RUK

Solution structure of the complex between p53 transactivation domain 2 and TFIIH p62 PH domain


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 

wwPDB Validation   3D Report Full Report


This is version 1.0 of the entry. See complete history


Literature

Extended String Binding Mode of the Phosphorylated Transactivation Domain of Tumor Suppressor p53

Okuda, M.Nishimura, Y.

(2014) J Am Chem Soc 

  • DOI: 10.1021/ja506351f
  • Primary Citation of Related Structures:  
    2RUK

  • PubMed Abstract: 
  • The transactivation domain (TAD) of tumor suppressor p53 has homologous subdomains, TAD1 and TAD2. Both are intrinsically disordered in their free states, but all structures of TAD1 and TAD2 bound to their target proteins have demonstrated use of an amphipathic α-helix, suggesting that the binding-coupled helix folding mechanism of TAD1 and TAD2 is essential ...

    The transactivation domain (TAD) of tumor suppressor p53 has homologous subdomains, TAD1 and TAD2. Both are intrinsically disordered in their free states, but all structures of TAD1 and TAD2 bound to their target proteins have demonstrated use of an amphipathic α-helix, suggesting that the binding-coupled helix folding mechanism of TAD1 and TAD2 is essential. Although phosphorylation of TAD is important to switch the function of p53, bound structures of phosphorylated TAD1 and TAD2 have not been determined. Here, we reveal the recognition mechanism of the phosphorylated TAD2 bound to a pleckstrin homology (PH) domain from human TFIIH subunit p62 in an extended string-like conformation. This string-like binding mode of TAD2 seems to be independent of its phosphorylation in spite of enhanced binding activity upon phosphorylation. This is in contrast to the amphipathic helical binding mode of the unphosphorylated TAD2 to the yeast tfb1 PH domain and demonstrates that the p53 TAD2 has much higher conformational malleability than previously appreciated.


    Organizational Affiliation

    Graduate School of Medical Life Science, Yokohama City University , 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
Cellular tumor antigen p53A22Homo sapiensMutation(s): 0 
Gene Names: TP53P53
UniProt & NIH Common Fund Data Resources
Find proteins for P04637 (Homo sapiens)
Explore P04637 
Go to UniProtKB:  P04637
PHAROS:  P04637
Protein Feature View
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 2
MoleculeChainsSequence LengthOrganismDetailsImage
General transcription factor IIH subunit 1B110Homo sapiensMutation(s): 0 
Gene Names: BTF2GTF2H1
UniProt & NIH Common Fund Data Resources
Find proteins for P32780 (Homo sapiens)
Explore P32780 
Go to UniProtKB:  P32780
PHAROS:  P32780
Protein Feature View
Expand
  • Reference Sequence
Small Molecules
Modified Residues  2 Unique
IDChainsTypeFormula2D DiagramParent
SEP
Query on SEP
AL-PEPTIDE LINKINGC3 H8 N O6 PSER
TPO
Query on TPO
AL-PEPTIDE LINKINGC4 H10 N O6 PTHR
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 
  • OLDERADO: 2RUK Olderado

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2014-10-15
    Type: Initial release