2RLK

Refined solution structure of porcine peptide YY (PYY)


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 20 
  • Selection Criteria: lowest energy, good geometry 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Probing the formation of stable tertiary structure in a model miniprotein at atomic resolution: determinants of stability of a helical hairpin

Neumoin, A.Mares, J.Lerch-Bader, M.Bader, R.Zerbe, O.

(2007) J Am Chem Soc 129: 8811-8817

  • DOI: https://doi.org/10.1021/ja0716960
  • Primary Citation of Related Structures:  
    2OON, 2OOP, 2RLK

  • PubMed Abstract: 

    The minimal model system to study the basic principles of protein folding is the hairpin. The formation of beta-hairpins, which are the basic components of antiparallel beta-sheets, has been studied extensively in the past decade, but much less is known about helical hairpins. Here, we probe hairpin formation between a polyproline type-II helix and an alpha-helix as present in the natural miniprotein peptide YY (PYY). Both turn sequence and interactions of aromatic side chains from the C-terminal alpha-helix with the pockets formed by N-terminal Pro residues are shown by site-directed mutagenesis and solution NMR spectroscopy in different solvent systems to be important determinants of backbone dynamics and hairpin stability, suggesting a close analogy with some beta-hairpin structures. It is shown that multiple relatively weak contacts between the helices are necessary for the formation of the helical hairpin studied here, whereas the type-I beta-turn acts like a hinge, which through certain single amino acid substitutions is destabilized such that hairpin formation is completely abolished. Denaturation and renaturation of tertiary structure by temperature or cosolvents were probed by measuring changes of chemical shifts. Folding of PYY is both reversible and cooperative as inferred from the sigmoidal denaturation curves displayed by residues at the interface of the helical hairpin. Such miniproteins thus feature an important hallmark of globular proteins and should provide a convenient system to study basic aspects of helical hairpin folding that are complementary to those derived from studies of beta-hairpins.


  • Organizational Affiliation

    Institute of Organic Chemistry, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Peptide YY37Sus scrofaMutation(s): 0 
Gene Names: PYY
UniProt
Find proteins for P68005 (Sus scrofa)
Explore P68005 
Go to UniProtKB:  P68005
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP68005
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 20 
  • Selection Criteria: lowest energy, good geometry 

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2007-08-14
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2022-03-16
    Changes: Data collection, Database references, Derived calculations