2R4V

Structure of human CLIC2, crystal form A


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.85 Å
  • R-Value Free: 0.250 
  • R-Value Work: 0.215 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Structure of the Janus Protein Human CLIC2

Cromer, B.A.Gorman, M.A.Hansen, G.Adams, J.J.Coggan, M.Littler, D.R.Brown, L.J.Mazzanti, M.Breit, S.N.Curmi, P.M.G.Dulhunty, A.F.Board, P.G.Parker, M.W.

(2007) J.Mol.Biol. 374: 719-731

  • DOI: 10.1016/j.jmb.2007.09.041
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • Chloride intracellular channel (CLIC) proteins possess the remarkable property of being able to convert from a water-soluble state to a membrane channel state. We determined the three-dimensional structure of human CLIC2 in its water-soluble form by ...

    Chloride intracellular channel (CLIC) proteins possess the remarkable property of being able to convert from a water-soluble state to a membrane channel state. We determined the three-dimensional structure of human CLIC2 in its water-soluble form by X-ray crystallography at 1.8-A resolution from two crystal forms. In contrast to the previously characterized CLIC1 protein, which forms a possibly functionally important disulfide-induced dimer under oxidizing conditions, we show that CLIC2 possesses an intramolecular disulfide and that the protein remains monomeric irrespective of redox conditions. Site-directed mutagenesis studies show that removal of the intramolecular disulfide or introduction of cysteine residues in CLIC2, equivalent to those that form the intramolecular disulfide in CLIC1, does not cause dimer formation under oxidizing conditions. We also show that CLIC2 forms pH-dependent chloride channels in vitro with higher channel activity at low pH levels and that the channels are subject to redox regulation. In both crystal forms, we observed an extended loop region from the C-terminal domain, called the foot loop, inserting itself into an interdomain crevice of a neighboring molecule. The equivalent region in the structurally related glutathione transferase superfamily corresponds to the active site. This so-called foot-in-mouth interaction suggests that CLIC2 might recognize other proteins such as the ryanodine receptor through a similar interaction.


    Organizational Affiliation

    Biota Structural Biology Laboratory, St. Vincent's Institute, Fitzroy, Victoria 3065, Australia.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Chloride intracellular channel protein 2
A
247Homo sapiensMutation(s): 0 
Gene Names: CLIC2
Find proteins for O15247 (Homo sapiens)
Go to Gene View: CLIC2
Go to UniProtKB:  O15247
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
GSH
Query on GSH

Download SDF File 
Download CCD File 
A
GLUTATHIONE
C10 H17 N3 O6 S
RWSXRVCMGQZWBV-WDSKDSINSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.85 Å
  • R-Value Free: 0.250 
  • R-Value Work: 0.215 
  • Space Group: P 21 21 21
Unit Cell:
Length (Å)Angle (°)
a = 44.015α = 90.00
b = 74.722β = 90.00
c = 79.827γ = 90.00
Software Package:
Software NamePurpose
REFMACrefinement
SCALEPACKdata scaling
AMoREphasing
HKL-2000data reduction

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2007-11-13
    Type: Initial release
  • Version 1.1: 2011-07-13
    Type: Advisory, Version format compliance
  • Version 1.2: 2011-12-21
    Type: Non-polymer description