2QBX

EphB2/SNEW Antagonistic Peptide Complex


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.3 Å
  • R-Value Free: 0.270 
  • R-Value Work: 0.194 

wwPDB Validation 3D Report Full Report


This is version 1.1 of the entry. See complete history

Literature

Three-dimensional structure of the EphB2 receptor in complex with an antagonistic peptide reveals a novel mode of inhibition.

Chrencik, J.E.Brooun, A.Recht, M.I.Nicola, G.Davis, L.K.Abagyan, R.Widmer, H.Pasquale, E.B.Kuhn, P.

(2007) J.Biol.Chem. 282: 36505-36513

  • DOI: 10.1074/jbc.M706340200

  • PubMed Abstract: 
  • The Eph family of receptor tyrosine kinases has been implicated in tumorigenesis as well as pathological forms of angiogenesis. Understanding how to modulate the interaction of Eph receptors with their ephrin ligands is therefore of critical interest ...

    The Eph family of receptor tyrosine kinases has been implicated in tumorigenesis as well as pathological forms of angiogenesis. Understanding how to modulate the interaction of Eph receptors with their ephrin ligands is therefore of critical interest for the development of therapeutics to treat cancer. Previous work identified a set of 12-mer peptides that displayed moderate binding affinity but high selectivity for the EphB2 receptor. The SNEW antagonistic peptide inhibited the interaction of EphB2 with ephrinB2, with an IC50 of approximately 15 microm. To gain a better molecular understanding of how to inhibit Eph/ephrin binding, we determined the crystal structure of the EphB2 receptor in complex with the SNEW peptide to 2.3-A resolution. The peptide binds in the hydrophobic ligand-binding cleft of the EphB2 receptor, thus competing with the ephrin ligand for receptor binding. However, the binding interactions of the SNEW peptide are markedly different from those described for the TNYL-RAW peptide, which binds to the ligand-binding cleft of EphB4, indicating a novel mode of antagonism. Nevertheless, we identified a conserved structural motif present in all known receptor/ligand interfaces, which may serve as a scaffold for the development of therapeutic leads. The EphB2-SNEW complex crystallized as a homodimer, and the residues involved in the dimerization interface are similar to those implicated in mediating tetramerization of EphB2-ephrinB2 complexes. The structure of EphB2 in complex with the SNEW peptide reveals novel binding determinants that could serve as starting points in the development of compounds that modulate Eph receptor/ephrin interactions and biological activities.


    Organizational Affiliation

    Department of Cellular Biology and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Ephrin type-B receptor 2
A, B
208Homo sapiensMutation(s): 0 
Gene Names: EPHB2 (DRT, EPHT3, EPTH3, ERK, HEK5, TYRO5)
EC: 2.7.10.1
Find proteins for P29323 (Homo sapiens)
Go to Gene View: EPHB2
Go to UniProtKB:  P29323
Entity ID: 2
MoleculeChainsSequence LengthOrganismDetails
antagonistic peptide
D, P
12N/AMutation(s): 0 
Protein Feature View is not available: No corresponding UniProt sequence found.
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
SO4
Query on SO4

Download SDF File 
Download CCD File 
A, B, D
SULFATE ION
O4 S
QAOWNCQODCNURD-UHFFFAOYSA-L
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.3 Å
  • R-Value Free: 0.270 
  • R-Value Work: 0.194 
  • Space Group: P 32
Unit Cell:
Length (Å)Angle (°)
a = 40.183α = 90.00
b = 40.183β = 90.00
c = 235.025γ = 120.00
Software Package:
Software NamePurpose
REFMACrefinement
HKL-2000data scaling
HKL-2000data collection
AMoREphasing
HKL-2000data reduction

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2007-11-06
    Type: Initial release
  • Version 1.1: 2011-07-13
    Type: Version format compliance