2PRU

NMR Structure of Human apoS100B at 10C


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 

wwPDB Validation 3D Report Full Report


This is version 1.1 of the entry. See complete history

Literature

Analysis of the structure of human apo-S100B at low temperature indicates a unimodal conformational distribution is adopted by calcium-free S100 proteins.

Malik, S.Revington, M.Smith, S.P.Shaw, G.S.

(2008) Proteins 73: 28-42

  • DOI: 10.1002/prot.22037

  • PubMed Abstract: 
  • S100B is one of the best-characterized members of the calcium-signaling S100 protein family. Most S100 proteins are dimeric, with each monomer containing two EF-hand calcium-binding sites (EF1, EF2). S100B and other S100 proteins respond to calcium i ...

    S100B is one of the best-characterized members of the calcium-signaling S100 protein family. Most S100 proteins are dimeric, with each monomer containing two EF-hand calcium-binding sites (EF1, EF2). S100B and other S100 proteins respond to calcium increases in the cell by coordinating calcium and undergoing a conformational change that allows them to interact with a variety of cellular targets. Although several three dimensional structures of S100 proteins are available in the calcium-free (apo-) state it has been observed that these structures appear to adopt a wide range of conformations in the EF2 site with respect to the positioning of helix III, the helix that undergoes the most dramatic calcium-induced conformational change. In this work, we have determined the structure of human apo-S100B at 10 degrees C to examine whether temperature might be responsible for these structural differences. Further, we have used this data, and other available apo-S100 structures, to show that despite the range of interhelical angles adopted in the apo-S100 structures, normal Gaussian distributions about the mean angles found in the structure of human apo-S100B are observed. This finding, only obvious from the analysis of all available apo-S100 proteins, provides direct structural evidence that helix III is a loosely packed helix. This is likely a necessary functional property of the S100 proteins that facilitates the calcium-induced conformational change of helix III. In contrast, the calcium-bound structures of the S100 proteins show significantly smaller variability in the interhelical angles. This shows that calcium binding to the S100 proteins causes not only a conformational change but results in a tighter distribution of helices within the EF2 calcium binding site required for target protein interactions.


    Organizational Affiliation

    Department of Biochemistry, The University of Western Ontario, London, Ontario N6A5C1, Canada.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Protein S100-B
A, B
91Homo sapiensMutation(s): 0 
Gene Names: S100B
Find proteins for P04271 (Homo sapiens)
Go to Gene View: S100B
Go to UniProtKB:  P04271
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2008-04-15
    Type: Initial release
  • Version 1.1: 2011-07-13
    Type: Version format compliance