2PHY

PHOTOACTIVE YELLOW PROTEIN, DARK STATE (UNBLEACHED)


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.4 Å
  • R-Value Free: 0.226 
  • R-Value Work: 0.186 

wwPDB Validation 3D Report Full Report


This is version 1.3 of the entry. See complete history

Literature

1.4 A structure of photoactive yellow protein, a cytosolic photoreceptor: unusual fold, active site, and chromophore.

Borgstahl, G.E.Williams, D.R.Getzoff, E.D.

(1995) Biochemistry 34: 6278-6287


  • PubMed Abstract: 
  • A photosensing protein directs light energy captured by its chromophore into a photocycle. The protein's structure must accommodate the photocycle and promote the resulting chemical or conformational changes that lead to signal transduction. The 1.4 ...

    A photosensing protein directs light energy captured by its chromophore into a photocycle. The protein's structure must accommodate the photocycle and promote the resulting chemical or conformational changes that lead to signal transduction. The 1.4 A crystallographic structure of photoactive yellow protein, determined by multiple isomorphous replacement methods, provides the first view at atomic resolution of a protein with a photocycle. The alpha/beta fold, which differs from the original chain tracing, shows striking similarity to distinct parts of the signal transduction proteins profilin and the SH2 domain. In the dark state structure of photoactive yellow protein, the novel 4-hydroxycinnamyl chromophore, covalently attached to Cys69, is buried within the major hydrophobic core of the protein and is tethered at both ends by hydrogen bonds. In the active site, the yellow anionic form of the chromophore is stabilized by hydrogen bonds from the side chains of Tyr42 and buried Glu46 to the phenolic oxygen atom and by electrostatic complementarity with the positively charged guanidinium group of Arg52. Thr50 further interlocks Tyr42, Glu46, and Arg52 through a network of active site hydrogen bonds. Arg52, located in a concavity of the protein surface adjacent to the dominant patch of negative electrostatic potential, shields the chromophore from solvent and is positioned to form a gateway for the phototactic signal. Overall, the high-resolution structure of photoactive yellow protein supports a mechanism whereby electrostatic interactions create an active site poised for photon-induced rearrangements and efficient protein-mediated signal transduction.


    Related Citations: 
    • Complete Chemical Structure of Photoactive Yellow Protein: Novel Thioester-Linked 4-Hydroxycinnamyl Chromophore and Photocycle Chemistry
      Baca, M.,Borgstahl, G.E.O.,Boissinot, M.,Burke, P.M.,Williams, D.R.,Slater, K.A.,Getzoff, E.D.
      (1994) Biochemistry 33: 14369


    Organizational Affiliation

    Department of Molecular Biology, Scripps Research Institute, La Jolla, California 92037, USA.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
PHOTOACTIVE YELLOW PROTEIN
A
125Halorhodospira halophilaGene Names: pyp
Find proteins for P16113 (Halorhodospira halophila)
Go to UniProtKB:  P16113
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
HC4
Query on HC4

Download SDF File 
Download CCD File 
A
4'-HYDROXYCINNAMIC ACID
PARA-COUMARIC ACID
C9 H8 O3
NGSWKAQJJWESNS-ZZXKWVIFSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.4 Å
  • R-Value Free: 0.226 
  • R-Value Work: 0.186 
  • Space Group: P 63
Unit Cell:
Length (Å)Angle (°)
a = 66.900α = 90.00
b = 66.900β = 90.00
c = 40.800γ = 120.00
Software Package:
Software NamePurpose
X-PLORmodel building
XENGENdata reduction
X-PLORrefinement
X-PLORphasing

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 1995-10-15
    Type: Initial release
  • Version 1.1: 2008-03-24
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Version format compliance
  • Version 1.3: 2017-11-29
    Type: Derived calculations, Other