2P9G

Crystal structure of serine bound G336V,G337V double mutant of E.coli phosphoglycerate dehydrogenase


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.8 Å
  • R-Value Free: 0.250 
  • R-Value Work: 0.197 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

The Effect of Hinge Mutations on Effector Binding and Domain Rotation in Escherichia coli D-3-Phosphoglycerate Dehydrogenase.

Dey, S.Hu, Z.Xu, X.L.Sacchettini, J.C.Grant, G.A.

(2007) J.Biol.Chem. 282: 18418-18426

  • DOI: 10.1074/jbc.M701174200
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • D-3-phosphoglycerate dehydrogenase (EC 1.1.1.95) from Escherichia coli contains two Gly-Gly sequences that have been shown previously to have the characteristics of hinge regions. One of these, Gly(336)-Gly(337), is found in the loop between the subs ...

    D-3-phosphoglycerate dehydrogenase (EC 1.1.1.95) from Escherichia coli contains two Gly-Gly sequences that have been shown previously to have the characteristics of hinge regions. One of these, Gly(336)-Gly(337), is found in the loop between the substrate binding domain and the regulatory domain. Changing these glycine residues to valine affected the sensitivity of the enzyme to inhibition by L-serine but not the extent of inhibition. The decrease in sensitivity was caused primarily by a decrease in the affinity of the enzyme for L-serine. These mutations also affected the domain rotation of the subunits in response to L-serine binding. A major conclusion of this study was that it defines a minimal limit on the necessary conformational changes leading to inhibition of enzyme activity. That is, some of the conformational differences seen in the native enzyme upon L-serine binding are not critical for inhibition, whereas others are maintained and may play important roles in inhibition and cooperativity. The structure of G336V demonstrates that the minimal effect of L-serine binding leading to inhibition of enzyme activity requires a domain rotation of approximately only 6 degrees in just two of the four subunits of the enzyme that are oriented diagonally across from each other in the tetramer. Moreover the structures show that both pairs of Asn190 to Asn190 hydrogen bonds across the subunit interfaces are necessary for activity. These observations are consistent with the half-the-sites activity, flip-flop mechanism proposed for this and other similar enzymes and suggest that the Asn190 hydrogen bonds may function in the conformational transition between alternate half-the-site active forms of the enzyme.


    Organizational Affiliation

    Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
D-3-phosphoglycerate dehydrogenase
A, B
410Escherichia coli (strain K12)Mutation(s): 6 
Gene Names: serA
EC: 1.1.1.95
Find proteins for P0A9T0 (Escherichia coli (strain K12))
Go to UniProtKB:  P0A9T0
Small Molecules
Ligands 2 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
NAI
Query on NAI

Download SDF File 
Download CCD File 
A, B
1,4-DIHYDRONICOTINAMIDE ADENINE DINUCLEOTIDE
NADH
C21 H29 N7 O14 P2
BOPGDPNILDQYTO-NNYOXOHSSA-N
 Ligand Interaction
SER
Query on SER

Download SDF File 
Download CCD File 
A
SERINE
C3 H7 N O3
MTCFGRXMJLQNBG-REOHCLBHSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.8 Å
  • R-Value Free: 0.250 
  • R-Value Work: 0.197 
  • Space Group: P 21 21 2
Unit Cell:
Length (Å)Angle (°)
a = 144.072α = 90.00
b = 132.239β = 90.00
c = 52.370γ = 90.00
Software Package:
Software NamePurpose
REFMACrefinement
CCP4data scaling
CrystalCleardata collection
MOSFLMdata reduction
PHASERphasing

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2007-04-24
    Type: Initial release
  • Version 1.1: 2008-05-01
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Derived calculations, Version format compliance