2MHP

Solution structure of the major factor VIII binding region on von Willebrand factor


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 10 
  • Selection Criteria: structures with the lowest energy 

wwPDB Validation 3D Report Full Report


This is version 1.0 of the entry. See complete history

Literature

Solution structure of the major factor VIII binding region on von Willebrand factor

Shiltagh, N.Kirkpatrick, J.Cabrita, L.D.McKinnon, T.A.J.Thalassinos, K.Tuddenham, E.G.D.Hansen, D.F.

(2014) Blood --: --

  • DOI: 10.1182/blood-2013-07-517086
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • Although much of the function of von Willebrand factor (VWF) has been revealed, detailed insight into the molecular structure that enables VWF to orchestrate hemostatic processes, in particular factor VIII (FVIII) binding and stabilization in plasma, ...

    Although much of the function of von Willebrand factor (VWF) has been revealed, detailed insight into the molecular structure that enables VWF to orchestrate hemostatic processes, in particular factor VIII (FVIII) binding and stabilization in plasma, is lacking. Here, we present the high-resolution solution structure and structural dynamics of the D' region of VWF, which constitutes the major FVIII binding site. D' consists of 2 domains, trypsin-inhibitor-like (TIL') and E', of which the TIL' domain lacks extensive secondary structure, is strikingly dynamic and harbors a cluster of pathological mutations leading to decreased FVIII binding affinity (type 2N von Willebrand disease [VWD]). This indicates that the backbone malleability of TIL' is important for its biological activity. The principal FVIII binding site is localized to a flexible, positively charged region on TIL', which is supported by the rigid scaffold of the TIL' and E' domain β sheets. Furthermore, surface-charge mapping of the TIL'E' structure reveals a potential mechanism for the electrostatically guided, high-affinity VWF⋅FVIII interaction. Our findings provide novel insights into VWF⋅FVIII complex formation, leading to a greater understanding of the molecular basis of the bleeding diathesis type 2N VWD.


    Organizational Affiliation

    Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, United Kingdom;




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
von Willebrand factor
A
103Homo sapiensMutation(s): 0 
Gene Names: VWF (F8VWF)
Find proteins for P04275 (Homo sapiens)
Go to Gene View: VWF
Go to UniProtKB:  P04275
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 10 
  • Selection Criteria: structures with the lowest energy 

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2014-05-14
    Type: Initial release