2LNQ

40-residue D23N beta amyloid fibril


Experimental Data Snapshot

  • Method: SOLID-STATE NMR
  • Conformers Calculated: 20 
  • Conformers Submitted: 10 
  • Selection Criteria: structures with acceptable covalent geometry 

wwPDB Validation 3D Report Full Report


This is version 1.1 of the entry. See complete history

Literature

Antiparallel beta-sheet architecture in Iowa-mutant beta-amyloid fibrils.

Qiang, W.Yau, W.M.Luo, Y.Mattson, M.P.Tycko, R.

(2012) Proc.Natl.Acad.Sci.USA 109: 4443-4448

  • DOI: 10.1073/pnas.1111305109

  • PubMed Abstract: 
  • Wild-type, full-length (40- and 42-residue) amyloid β-peptide (Aβ) fibrils have been shown by a variety of magnetic resonance techniques to contain cross-β structures in which the β-sheets have an in-register parallel supramolecular organization. In ...

    Wild-type, full-length (40- and 42-residue) amyloid β-peptide (Aβ) fibrils have been shown by a variety of magnetic resonance techniques to contain cross-β structures in which the β-sheets have an in-register parallel supramolecular organization. In contrast, recent studies of fibrils formed in vitro by the Asp23-to-Asn mutant of 40-residue Aβ (D23N-Aβ(1-40)), which is associated with early onset neurodegeneration, indicate that D23N-Aβ(1-40) fibrils can contain either parallel or antiparallel β-sheets. We report a protocol for producing structurally pure antiparallel D23N-Aβ(1-40) fibril samples and a series of solid state nuclear magnetic resonance and electron microscopy measurements that lead to a specific model for the antiparallel D23N-Aβ(1-40) fibril structure. This model reveals how both parallel and antiparallel cross-β structures can be constructed from similar peptide monomer conformations and stabilized by similar sets of interactions, primarily hydrophobic in nature. We find that antiparallel D23N-Aβ(1-40) fibrils are thermodynamically metastable with respect to conversion to parallel structures, propagate less efficiently than parallel fibrils in seeded fibril growth, and therefore must nucleate more efficiently than parallel fibrils in order to be observable. Experiments in neuronal cell cultures indicate that both antiparallel and parallel D23N-Aβ(1-40) fibrils are cytotoxic. Thus, our antiparallel D23N-Aβ(1-40) fibril model represents a specific "toxic intermediate" in the aggregation process of a disease-associated Aβ mutant.


    Organizational Affiliation

    Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
P3(40)
A, B, C, D, E, F, G, H
40Homo sapiensMutation(s): 0 
Gene Names: APP (A4, AD1)
Find proteins for P05067 (Homo sapiens)
Go to Gene View: APP
Go to UniProtKB:  P05067
Experimental Data & Validation

Experimental Data

  • Method: SOLID-STATE NMR
  • Conformers Calculated: 20 
  • Conformers Submitted: 10 
  • Selection Criteria: structures with acceptable covalent geometry 
  • Olderado: 2LNQ Olderado

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2012-02-08
    Type: Initial release
  • Version 1.1: 2013-08-28
    Type: Database references