2LCX

Spatial Structure of the ErbB4 dimeric TM domain


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 200 
  • Conformers Submitted: 20 
  • Selection Criteria: target function 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Structural and thermodynamic insight into the process of "weak" dimerization of the ErbB4 transmembrane domain by solution NMR.

Bocharov, E.V.Mineev, K.S.Goncharuk, M.V.Arseniev, A.S.

(2012) Biochim Biophys Acta 1818: 2158-2170

  • DOI: 10.1016/j.bbamem.2012.05.001
  • Primary Citation of Related Structures:  
    2LCX, 2L2T

  • PubMed Abstract: 
  • Specific helix-helix interactions between the single-span transmembrane domains of receptor tyrosine kinases are believed to be important for their lateral dimerization and signal transduction. Establishing structure-function relationships requires p ...

    Specific helix-helix interactions between the single-span transmembrane domains of receptor tyrosine kinases are believed to be important for their lateral dimerization and signal transduction. Establishing structure-function relationships requires precise structural-dynamic information about this class of biologically significant bitopic membrane proteins. ErbB4 is a ubiquitously expressed member of the HER/ErbB family of growth factor receptor tyrosine kinases that is essential for the normal development of various adult and fetal human tissues and plays a role in the pathobiology of the organism. The dimerization of the ErbB4 transmembrane domain in membrane-mimicking lipid bicelles was investigated by solution NMR. In a bicellar DMPC/DHPC environment, the ErbB4 membrane-spanning α-helices (651-678)(2) form a right-handed parallel dimer through the N-terminal double GG4-like motif A(655)GxxGG(660) in a fashion that is believed to permit proper kinase domain activation. During helix association, the dimer subunits undergo a structural adjustment (slight bending) with the formation of a network of inter-monomeric polar contacts. The quantitative analysis of the observed monomer-dimer equilibrium provides insights into the kinetics and thermodynamics of the folding process of the helical transmembrane domain in the model environment that may be directly relevant to the process that occurs in biological membranes. The lipid bicelles occupied by a single ErbB4 transmembrane domain behave as a true ("ideal") solvent for the peptide, while multiply occupied bicelles are more similar to the ordered lipid microdomains of cellular membranes and appear to provide substantial entropic enhancement of the weak helix-helix interactions, which may be critical for membrane protein activity.


    Organizational Affiliation

    Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russian Federation. bon@nmr.ru



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
Receptor tyrosine-protein kinase erbB-4AB44Homo sapiensMutation(s): 0 
Gene Names: ERBB4HER4
EC: 2.7.10.1
Membrane protein
Mpstruc
Group: 
TRANSMEMBRANE PROTEINS: ALPHA-HELICAL
Sub Group: 
Epidermal Growth Factor Receptors (EGFRs)
Protein: 
ErbB4 transmembrane segment dimer
Find proteins for Q15303 (Homo sapiens)
Explore Q15303 
Go to UniProtKB:  Q15303
NIH Common Fund Data Resources
PHAROS  Q15303
Protein Feature View
Expand
 ( Mouse scroll to zoom / Hold left click to move )
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 200 
  • Conformers Submitted: 20 
  • Selection Criteria: target function 
  • OLDERADO: 2LCX Olderado

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2012-05-16
    Type: Initial release
  • Version 1.1: 2012-05-23
    Changes: Database references
  • Version 1.2: 2012-06-20
    Changes: Database references