2L91

Structure of the Integrin beta3 (A711P,K716A) Transmembrane Segment


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 21 
  • Conformers Submitted: 21 
  • Selection Criteria: all calculated structures submitted 

wwPDB Validation   3D Report Full Report


This is version 1.1 of the entry. See complete history


Literature

Basic amino-acid side chains regulate transmembrane integrin signalling.

Kim, C.Schmidt, T.Cho, E.G.Ye, F.Ulmer, T.S.Ginsberg, M.H.

(2012) Nature 481: 209-213

  • DOI: 10.1038/nature10697
  • Primary Citation of Related Structures:  
    2L91

  • PubMed Abstract: 
  • Side chains of Lys/Arg near transmembrane domain (TMD) membrane-water interfaces can 'snorkel', placing their positive charge near negatively charged phospholipid head groups; however, snorkelling's functional effects are obscure. Integrin β TMDs have such conserved basic amino acids ...

    Side chains of Lys/Arg near transmembrane domain (TMD) membrane-water interfaces can 'snorkel', placing their positive charge near negatively charged phospholipid head groups; however, snorkelling's functional effects are obscure. Integrin β TMDs have such conserved basic amino acids. Here we use NMR spectroscopy to show that integrin β(3)(Lys 716) helps determine β(3) TMD topography. The α(ΙΙb)β(3) TMD structure indicates that precise β(3) TMD crossing angles enable the assembly of outer and inner membrane 'clasps' that hold the αβ TMD together to limit transmembrane signalling. Mutation of β(3)(Lys 716) caused dissociation of α(ΙΙb)β(3) TMDs and integrin activation. To confirm that altered topography of β(3)(Lys 716) mutants activated α(ΙΙb)β(3), we used directed evolution of β(3)(K716A) to identify substitutions restoring default state. Introduction of Pro(711) at the midpoint of β(3) TMD (A711P) increased α(ΙΙb)β(3) TMD association and inactivated integrin α(ΙΙb)β(3)(A711P,K716A). β(3)(Pro 711) introduced a TMD kink of 30 ± 1° precisely at the border of the outer and inner membrane clasps, thereby decoupling the tilt between these segments. Thus, widely occurring snorkelling residues in TMDs can help maintain TMD topography and membrane-embedding, thereby regulating transmembrane signalling.


    Organizational Affiliation

    Department of Medicine, University of California, San Diego, La Jolla, California 92093, USA.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
Integrin beta-3A43Homo sapiensMutation(s): 3 
Gene Names: ITGB3GP3A
Find proteins for P05106 (Homo sapiens)
Explore P05106 
Go to UniProtKB:  P05106
NIH Common Fund Data Resources
PHAROS:  P05106
Protein Feature View
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 21 
  • Conformers Submitted: 21 
  • Selection Criteria: all calculated structures submitted 
  • OLDERADO: 2L91 Olderado

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2011-12-21
    Type: Initial release
  • Version 1.1: 2012-01-25
    Changes: Database references