2L8B

TraI (381-569)


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 200 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Solution structure and small angle scattering analysis of TraI (381-569).

Wright, N.T.Raththagala, M.Hemmis, C.W.Edwards, S.Curtis, J.E.Krueger, S.Schildbach, J.F.

(2012) Proteins 80: 2250-2261

  • DOI: 10.1002/prot.24114

  • PubMed Abstract: 
  • TraI, the F plasmid-encoded nickase, is a 1756 amino acid protein essential for conjugative transfer of plasmid DNA from one bacterium to another. Although crystal structures of N- and C-terminal domains of F TraI have been determined, central domain ...

    TraI, the F plasmid-encoded nickase, is a 1756 amino acid protein essential for conjugative transfer of plasmid DNA from one bacterium to another. Although crystal structures of N- and C-terminal domains of F TraI have been determined, central domains of the protein are structurally unexplored. The central region (between residues 306 and 1520) is known to both bind single-stranded DNA (ssDNA) and unwind DNA through a highly processive helicase activity. Here, we show that the ssDNA binding site is located between residues 381 and 858, and we also present the high-resolution solution structure of the N-terminus of this region (residues 381-569). This fragment folds into a four-strand parallel β sheet surrounded by α helices, and it resembles the structure of the N-terminus of helicases such as RecD and RecQ despite little sequence similarity. The structure supports the model that F TraI resulted from duplication of a RecD-like domain and subsequent specialization of domains into the more N-terminal ssDNA binding domain and the more C-terminal domain containing helicase motifs. In addition, we provide evidence that the nickase and ssDNA binding domains of TraI are held close together by an 80-residue linker sequence that connects the two domains. These results suggest a possible physical explanation for the apparent negative cooperativity between the nickase and ssDNA binding domain.


    Organizational Affiliation

    Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Protein traI
A
189Escherichia coli (strain K12)Mutation(s): 0 
Gene Names: traI
Find proteins for P14565 (Escherichia coli (strain K12))
Go to UniProtKB:  P14565
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 200 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 
  • Olderado: 2L8B Olderado

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2012-01-11
    Type: Initial release
  • Version 1.1: 2012-05-23
    Type: Database references
  • Version 1.2: 2012-08-15
    Type: Database references