2L1V

Solution structure of a preQ1 riboswitch (Class I) aptamer bound to preQ1


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 200 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Structural Insights into Riboswitch Control of the Biosynthesis of Queuosine, a Modified Nucleotide Found in the Anticodon of tRNA

Kang, M.Peterson, R.D.Feigon, J.

(2009) Mol Cell 33: 784-790

  • DOI: 10.1016/j.molcel.2009.02.019
  • Primary Citation of Related Structures:  
    2L1V

  • PubMed Abstract: 
  • The modified nucleotide queuosine (Q) is almost universally found in the anticodon wobble position of specific tRNAs. In many bacteria, biosynthesis of Q is modulated by a class of regulatory mRNA elements called riboswitches. The preQ(1) riboswitch, found in the 5'UTR of bacterial genes involved in synthesis of the Q precursors preQ(0) and preQ(1), contains the smallest known aptamer domain ...

    The modified nucleotide queuosine (Q) is almost universally found in the anticodon wobble position of specific tRNAs. In many bacteria, biosynthesis of Q is modulated by a class of regulatory mRNA elements called riboswitches. The preQ(1) riboswitch, found in the 5'UTR of bacterial genes involved in synthesis of the Q precursors preQ(0) and preQ(1), contains the smallest known aptamer domain. We report the solution structure of the preQ(1) riboswitch aptamer domain from Bacillus subtilis bound to preQ(1), which is a unique compact pseudoknot with three loops and two stems that encapsulates preQ(1) at the junction between the two stems. The pseudoknot only forms in the presence of preQ(1), and the 3' A-rich tail of the aptamer domain is an integral part of the pseudoknot. In the absence of preQ(1), the A-rich tail forms part of the antiterminator. These structural studies provide insight into riboswitch transcriptional control of preQ(1) biosynthesis.


    Organizational Affiliation

    UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA 90095-1569, USA.



Macromolecules
Find similar nucleic acids by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChainsLengthOrganismImage
36-MERA 36N/A
Protein Feature View
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
PRF
Query on PRF

Download Ideal Coordinates CCD File 
B [auth A]7-DEAZA-7-AMINOMETHYL-GUANINE
C7 H9 N5 O
MEYMBLGOKYDGLZ-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 200 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 
  • OLDERADO: 2L1V Olderado

Structure Validation

View Full Validation Report




Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2010-09-01
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2020-02-05
    Changes: Data collection, Database references, Other