2KMS

Combined high- and low-resolution techniques reveal compact structure in central portion of factor H despite long inter-modular linkers


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 

wwPDB Validation 3D Report Full Report


This is version 1.1 of the entry. See complete history

Literature

The Central Portion of Factor H (Modules 10-15) Is Compact and Contains a Structurally Deviant CCP Module

Schmidt, C.Q.Herbert, A.P.Mertens, H.D.T.Guariento, M.Soares, D.C.Uhrin, D.Rowe, A.J.Svergun, D.I.Barlow, P.N.

(2010) J.Mol.Biol. 395: 105-122

  • DOI: 10.1016/j.jmb.2009.10.010

  • PubMed Abstract: 
  • The first eight and the last two of 20 complement control protein (CCP) modules within complement factor H (fH) encompass binding sites for C3b and polyanionic carbohydrates. These binding sites cooperate self-surface selectively to prevent C3b ampli ...

    The first eight and the last two of 20 complement control protein (CCP) modules within complement factor H (fH) encompass binding sites for C3b and polyanionic carbohydrates. These binding sites cooperate self-surface selectively to prevent C3b amplification, thus minimising complement-mediated damage to host. Intervening fH CCPs, apparently devoid of such recognition sites, are proposed to play a structural role. One suggestion is that the generally small CCPs 10-15, connected by longer-than-average linkers, act as a flexible tether between the two functional ends of fH; another is that the long linkers induce a 180 degrees bend in the middle of fH. To test these hypotheses, we determined the NMR-derived structure of fH12-13 consisting of module 12, shown here to have an archetypal CCP structure, and module 13, which is uniquely short and features a laterally protruding helix-like insertion that contributes to a prominent electropositive patch. The unusually long fH12-13 linker is not flexible. It packs between the two CCPs that are not folded back on each other but form a shallow vee shape; analytical ultracentrifugation and X-ray scattering supported this finding. These two techniques additionally indicate that flanking modules (within fH11-14 and fH10-15) are at least as rigid and tilted relative to neighbours as are CCPs 12 and 13 with respect to one another. Tilts between successive modules are not unidirectional; their principal axes trace a zigzag path. In one of two arrangements for CCPs 10-15 that fit well with scattering data, CCP 14 is folded back onto CCP 13. In conclusion, fH10-15 forms neither a flexible tether nor a smooth bend. Rather, it is compact and has embedded within it a CCP module (CCP 13) that appears to be highly specialised given both its deviant structure and its striking surface charge distribution. A passive, purely structural role for this central portion of fH is unlikely.


    Organizational Affiliation

    Edinburgh Biomolecular NMR Unit, Centre for Chemical and Translational Biology, Schools of Biological Sciences and Chemistry, University of Edinburgh, Edinburgh EH9 3JJ, UK.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Complement factor H
A
115Homo sapiensMutation(s): 0 
Gene Names: CFH (HF, HF1, HF2)
Find proteins for P08603 (Homo sapiens)
Go to Gene View: CFH
Go to UniProtKB:  P08603
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 
  • Olderado: 2KMS Olderado

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2009-11-03
    Type: Initial release
  • Version 1.1: 2011-07-13
    Type: Version format compliance