2K96

Solution structure of the RDC-refined P2B-P3 pseudoknot from human telomerase RNA (delta U177)


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 200 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Solution Structure and Dynamics of the Wild-type Pseudoknot of Human Telomerase RNA.

Kim, N.K.Zhang, Q.Zhou, J.Theimer, C.A.Peterson, R.D.Feigon, J.

(2008) J Mol Biol 384: 1249-1261

  • DOI: 10.1016/j.jmb.2008.10.005
  • Primary Citation of Related Structures:  
    2K95, 2K96

  • PubMed Abstract: 
  • Telomerase is a ribonucleoprotein complex that replicates the 3' ends of linear chromosomes by successive additions of telomere repeat DNA. The telomerase holoenzyme contains two essential components for catalysis, a telomerase reverse transcriptase (TERT) and telomerase RNA (TER) ...

    Telomerase is a ribonucleoprotein complex that replicates the 3' ends of linear chromosomes by successive additions of telomere repeat DNA. The telomerase holoenzyme contains two essential components for catalysis, a telomerase reverse transcriptase (TERT) and telomerase RNA (TER). The TER includes a template for telomere repeat synthesis as well as other domains required for function. We report the solution structure of the wild-type minimal conserved human TER pseudoknot refined with an extensive set of RDCs, and a detailed analysis of the effect of the bulge U177 on pseudoknot structure, dynamics analyzed by RDC and 13C relaxation measurements, and base pair stability. The overall structure of PKWT is highly similar to the previously reported DeltaU177 pseudoknot (PKDU) that has a deletion of a conserved bulge U important for catalytic activity. For direct comparison to PKWT, the structure of PKDU was re-refined with a comparable set of RDCs. Both pseudoknots contain a catalytically essential triple helix at the junction of the two stems, including two stem 1-loop 2 minor groove triples, a junction loop 1-loop 2 Hoogsteen base pair, and stem 2-loop 1 major groove U.A-U Watson-Crick-Hoogsteen triples located directly above the bulge U177. However, there are significant differences in the stabilities of base pairs near the bulge and the dynamics of some nucleotides. The stability of the base pairs in stem 2 surrounding the bulge U177 is greatly decreased, with the result that the Watson-Crick pairs in the triple helix begin to unfold before the Hoogsteen pairs, which may affect telomerase assembly and activity. The bulge U is positioned in the minor groove on the face opposite the triple helical interactions, and sterically blocks the A176 2'OH, which has recently been proposed to have a role in catalysis. The bulge U may serve as a hinge providing backbone flexibility in this region.


    Related Citations: 
    • Structure of the human telomerase RNA pseudoknot reveals conserved tertiary interactions essential for function
      Theimer, C.A., Blois, C.A., Feigon, J.
      (2005) Mol Cell 17: 671

    Organizational Affiliation

    Department of Chemistry and Biochemistry, P.O. Box 951569, University of California, Los Angeles, CA 90095-1569, USA.



Macromolecules
Find similar nucleic acids by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChainsLengthOrganismImage
TELOMERASE RNA P2B-P3 PSEUDOKNOTA 47N/A
Protein Feature View
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 200 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 
  • OLDERADO: 2K96 Olderado

Structure Validation

View Full Validation Report




Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2008-11-25
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2022-03-16
    Changes: Data collection, Database references, Derived calculations