2K7L

NMR structure of a complex formed by the C-terminal domain of human RAP74 and a phosphorylated peptide from the central domain of the FCP1


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 21 
  • Conformers Submitted: 21 
  • Selection Criteria: all calculated structures submitted 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

NMR structure of a complex formed by the carboxyl-terminal domain of human RAP74 and a phosphorylated peptide from the central domain of the FCP1 phosphatase

Yang, A.Abbott, K.L.Desjardins, A.Di Lello, P.Omichinski, J.G.Legault, P.

(2009) Biochemistry 48: 1964-1974

  • DOI: 10.1021/bi801549m
  • Primary Citation of Related Structures:  
    2K7L

  • PubMed Abstract: 
  • Recycling of RNA polymerase II (RNAPII) requires dephosphorylation of the C-terminal domain (CTD) of the largest subunit of the polymerase. FCP1 enables the recycling of RNAPII via its CTD-specific phosphatase activity, which is stimulated by the RAP ...

    Recycling of RNA polymerase II (RNAPII) requires dephosphorylation of the C-terminal domain (CTD) of the largest subunit of the polymerase. FCP1 enables the recycling of RNAPII via its CTD-specific phosphatase activity, which is stimulated by the RAP74 subunit of the general transcription factor TFIIF. Both the central (centFCP1) and C-terminal (cterFCP1) domains of FCP1 interact independently and specifically with the C-terminal domain of RAP74 (cterRAP74), suggesting that these interactions mediate the stimulatory effect of TFIIF on the CTD phosphatase activity of FCP1. Phosphorylation of FCP1 by casein kinase 2 on residues in its central (T584) and C-terminal (S942 and S944) domains stimulates its binding to RAP74 and its CTD phosphatase activity. To improve our understanding of the FCP1-RAP74 interactions, we previously determined the NMR structure of a complex formed by human cterRAP74 and cterFCP1. We now present the high-resolution NMR structure and thermodynamic characterization by isothermal titration calorimetry of a complex formed by the same cterRAP74 domain and a phosphorylated peptide from the central domain of human FCP1 (centFCP1-PO(4)). Comparison of the cterFCP1-cterRAP74 and centFCP1-PO(4)-cterRAP74 complexes indicates that centFCP1 and cterFCP1 both utilize hydrophobic and acidic residues to recognize the same groove of RAP74, but there are significant differences in the details of their interactions. These differences point to the adaptability of RAP74 to recognize the two regions of FCP1. Our NMR and thermodynamic studies further elucidate the complex molecular mechanism by which TFIIF and FCP1 cooperate for RNAPII recycling.


    Organizational Affiliation

    Département de Biochimie, Université de Montréal, Succursale Centre-Ville, QC, Canada.



Macromolecules
  • Find similar proteins by:  Sequence   |   Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
centFCP1-T584PO4 peptideB19N/AMutation(s): 0 
Find proteins for Q9Y5B0 (Homo sapiens)
Explore Q9Y5B0 
Go to UniProtKB:  Q9Y5B0
NIH Common Fund Data Resources
PHAROS  Q9Y5B0
Protein Feature View
Expand
 ( Mouse scroll to zoom / Hold left click to move )
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 2
MoleculeChainsSequence LengthOrganismDetailsImage
General transcription factor IIF subunit 1A67Homo sapiensMutation(s): 0 
Gene Names: GTF2F1RAP74
Find proteins for P35269 (Homo sapiens)
Explore P35269 
Go to UniProtKB:  P35269
NIH Common Fund Data Resources
PHAROS  P35269
Protein Feature View
Expand
 ( Mouse scroll to zoom / Hold left click to move )
  • Reference Sequence
Small Molecules
Modified Residues  1 Unique
IDChainsTypeFormula2D DiagramParent
TPO
Query on TPO
BL-PEPTIDE LINKINGC4 H10 N O6 PTHR
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 21 
  • Conformers Submitted: 21 
  • Selection Criteria: all calculated structures submitted 
  • OLDERADO: 2K7L Olderado

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2009-06-02
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2020-02-19
    Changes: Derived calculations, Other