2K4Q

The Solution Structure of gpV, the Major Tail Protein from Bacteriophage Lambda


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

The phage lambda major tail protein structure reveals a common evolution for long-tailed phages and the type VI bacterial secretion system.

Pell, L.G.Kanelis, V.Donaldson, L.W.Howell, P.L.Davidson, A.R.

(2009) Proc Natl Acad Sci U S A 106: 4160-4165

  • DOI: 10.1073/pnas.0900044106
  • Primary Citation of Related Structures:  
    2K4Q

  • PubMed Abstract: 
  • Most bacteriophages possess long tails, which serve as the conduit for genome delivery. We report the solution structure of the N-terminal domain of gpV, the protein comprising the major portion of the noncontractile phage lambda tail tube. This structure is very similar to a previously solved tail tube protein from a contractile-tailed phage, providing the first direct evidence of an evolutionary connection between these 2 distinct types of phage tails ...

    Most bacteriophages possess long tails, which serve as the conduit for genome delivery. We report the solution structure of the N-terminal domain of gpV, the protein comprising the major portion of the noncontractile phage lambda tail tube. This structure is very similar to a previously solved tail tube protein from a contractile-tailed phage, providing the first direct evidence of an evolutionary connection between these 2 distinct types of phage tails. A remarkable structural similarity is also seen to Hcp1, a component of the bacterial type VI secretion system. The hexameric structure of Hcp1 and its ability to form long tubes are strikingly reminiscent of gpV when it is polymerized into a tail tube. These data coupled with other similarities between phage and type VI secretion proteins support an evolutionary relationship between these systems. Using Hcp1 as a model, we propose a polymerization mechanism for gpV involving several disorder-to-order transitions.


    Organizational Affiliation

    Department of Biochemistry, University of Toronto, Medical Sciences Building, Toronto, ON M5S 1A8, Canada.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
Major tail protein VA156Escherichia virus LambdaMutation(s): 0 
Gene Names: Vlambdap13
Find proteins for P03733 (Escherichia phage lambda)
Explore P03733 
Go to UniProtKB:  P03733
Protein Feature View
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 
  • OLDERADO: 2K4Q Olderado

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2009-02-17
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2020-02-19
    Changes: Database references, Derived calculations, Other