2JOA

HtrA1 bound to an optimized peptide: NMR assignment of PDZ domain and ligand resonances


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the least restraint violations 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Structural and functional analysis of the PDZ domains of human HtrA1 and HtrA3

Runyon, S.T.Zhang, Y.Appleton, B.A.Sazinsky, S.L.Wu, P.Pan, B.Wiesmann, C.Skelton, N.J.Sidhu, S.S.

(2007) Protein Sci 16: 2454-2471

  • DOI: 10.1110/ps.073049407
  • Primary Citation of Related Structures:  
    2P3W, 2JOA

  • PubMed Abstract: 
  • High-temperature requirement A (HtrA) and its homologs contain a serine protease domain followed by one or two PDZ domains. Bacterial HtrA proteins and the mitochondrial protein HtrA2/Omi maintain cell function by acting as both molecular chaperones and ...

    High-temperature requirement A (HtrA) and its homologs contain a serine protease domain followed by one or two PDZ domains. Bacterial HtrA proteins and the mitochondrial protein HtrA2/Omi maintain cell function by acting as both molecular chaperones and proteases to manage misfolded proteins. The biological roles of the mammalian family members HtrA1 and HtrA3 are less clear. We report a detailed structural and functional analysis of the PDZ domains of human HtrA1 and HtrA3 using peptide libraries and affinity assays to define specificity, structural studies to view the molecular details of ligand recognition, and alanine scanning mutagenesis to investigate the energetic contributions of individual residues to ligand binding. In common with HtrA2/Omi, we show that the PDZ domains of HtrA1 and HtrA3 recognize hydrophobic polypeptides, and while C-terminal sequences are preferred, internal sequences are also recognized. However, the details of the interactions differ, as different domains rely on interactions with different residues within the ligand to achieve high affinity binding. The results suggest that mammalian HtrA PDZ domains interact with a broad range of hydrophobic binding partners. This promiscuous specificity resembles that of bacterial HtrA family members and suggests a similar function for recognizing misfolded polypeptides with exposed hydrophobic sequences. Our results support a common activation mechanism for the HtrA family, whereby hydrophobic peptides bind to the PDZ domain and induce conformational changes that activate the protease. Such a mechanism is well suited to proteases evolved for the recognition and degradation of misfolded proteins.


    Related Citations: 
    • HtrA1 bound to an optimized peptide: NMR assignment of PDZ domain and ligand resonances
      Runyon, S.T., Pan, B., Skelton, N.J.
      () To be published --: --

    Organizational Affiliation

    Department of Medicinal Chemistry, Genetech, Inc., South San Francisco, CA 94080, USA.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
Serine protease HTRA1 A105Homo sapiensMutation(s): 0 
Gene Names: HTRA1HTRAPRSS11
EC: 3.4.21
Find proteins for Q92743 (Homo sapiens)
Explore Q92743 
Go to UniProtKB:  Q92743
NIH Common Fund Data Resources
PHAROS:  Q92743
Protein Feature View
Expand
  • Reference Sequence
  • Find similar proteins by:  Sequence   |   Structure
Entity ID: 2
MoleculeChainsSequence LengthOrganismDetailsImage
Peptide H1-C1 B7synthetic constructMutation(s): 0 
Protein Feature View
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the least restraint violations 
  • OLDERADO: 2JOA Olderado

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2007-11-20
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2020-02-05
    Changes: Data collection, Database references, Derived calculations, Other, Source and taxonomy