2JO1

Structure of the Na,K-ATPase regulatory protein FXYD1 in micelles


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 

wwPDB Validation 3D Report Full Report


This is version 1.1 of the entry. See complete history

Literature

Structure of the Na,K-ATPase regulatory protein FXYD1 in micelles

Teriete, P.Franzin, C.M.Choi, J.Marassi, F.M.

(2007) Biochemistry 46: 6774-6783

  • DOI: 10.1021/bi700391b

  • PubMed Abstract: 
  • FXYD1 is a major regulatory subunit of the Na,K-ATPase and the principal substrate of hormone-regulated phosphorylation by c-AMP dependent protein kinases A and C in heart and skeletal muscle sarcolemma. It is a member of an evolutionarily conserved ...

    FXYD1 is a major regulatory subunit of the Na,K-ATPase and the principal substrate of hormone-regulated phosphorylation by c-AMP dependent protein kinases A and C in heart and skeletal muscle sarcolemma. It is a member of an evolutionarily conserved family of membrane proteins that regulate the function of the enzyme complex in a tissue-specific and physiological-state-specific manner. Here, we present the three-dimensional structure of FXYD1 determined in micelles by NMR spectroscopy. Structure determination was made possible by measuring residual dipolar couplings in weakly oriented micelle samples of the protein. This allowed us to obtain the relative orientations of the helical segments and information about the protein dynamics. The structural analysis was further facilitated by the inclusion of distance restraints, obtained from paramagnetic spin label relaxation enhancements, and by refinement with a micelle depth restraint, derived from paramagnetic Mn line broadening effects. The structure of FXYD1 provides the foundation for understanding its intra-membrane association with the Na,K-ATPase alpha subunit and suggests a mechanism whereby the phosphorylation of conserved Ser residues, by protein kinases A and C, could induce a conformational change in the cytoplasmic domain of the protein to modulate its interaction with the alpha subunit.


    Organizational Affiliation

    Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, California 92037, USA.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Phospholemman
A
72Homo sapiensMutation(s): 0 
Gene Names: FXYD1 (PLM)
Membrane protein
mpstruct
Group: 
TRANSMEMBRANE PROTEINS: ALPHA-HELICAL
Sub Group: 
P-type ATPase
Protein: 
Na,K-ATPase Regulatory Protein FXYD1
Find proteins for O00168 (Homo sapiens)
Go to Gene View: FXYD1
Go to UniProtKB:  O00168
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 
  • Olderado: 2JO1 Olderado

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2007-07-31
    Type: Initial release
  • Version 1.1: 2011-07-13
    Type: Version format compliance