2JNW

Solution structure of a ERCC1-XPA heterodimer


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 10 
  • Selection Criteria: structures with the lowest energy 

wwPDB Validation   3D Report Full Report


This is version 1.1 of the entry. See complete history


Literature

Structural basis for the recruitment of ERCC1-XPF to nucleotide excision repair complexes by XPA

Tsodikov, O.V.Ivanov, D.Orelli, B.Staresincic, L.Shoshani, I.Oberman, R.Scharer, O.D.Wagner, G.Ellenberger, T.

(2007) EMBO J 26: 4768-4776

  • DOI: 10.1038/sj.emboj.7601894
  • Primary Citation of Related Structures:  
    2JNW

  • PubMed Abstract: 
  • The nucleotide excision repair (NER) pathway corrects DNA damage caused by sunlight, environmental mutagens and certain antitumor agents. This multistep DNA repair reaction operates by the sequential assembly of protein factors at sites of DNA damage. The efficient recognition of DNA damage and its repair are orchestrated by specific protein-protein and protein-DNA interactions within NER complexes ...

    The nucleotide excision repair (NER) pathway corrects DNA damage caused by sunlight, environmental mutagens and certain antitumor agents. This multistep DNA repair reaction operates by the sequential assembly of protein factors at sites of DNA damage. The efficient recognition of DNA damage and its repair are orchestrated by specific protein-protein and protein-DNA interactions within NER complexes. We have investigated an essential protein-protein interaction of the NER pathway, the binding of the XPA protein to the ERCC1 subunit of the repair endonuclease ERCC1-XPF. The structure of ERCC1 in complex with an XPA peptide shows that only a small region of XPA interacts with ERCC1 to form a stable complex exhibiting submicromolar binding affinity. However, this XPA peptide is a potent inhibitor of NER activity in a cell-free assay, blocking the excision of a cisplatin adduct from DNA. The structure of the peptide inhibitor bound to its target site reveals a binding interface that is amenable to the development of small molecule peptidomimetics that could be used to modulate NER repair activities in vivo.


    Organizational Affiliation

    Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
DNA excision repair protein ERCC-1A133Homo sapiensMutation(s): 0 
Gene Names: ERCC1
UniProt & NIH Common Fund Data Resources
Find proteins for P07992 (Homo sapiens)
Explore P07992 
Go to UniProtKB:  P07992
PHAROS:  P07992
Protein Feature View
Expand
  • Reference Sequence
  • Find similar proteins by:  Sequence   |   Structure
Entity ID: 2
MoleculeChainsSequence LengthOrganismDetailsImage
DNA-repair protein complementing XP-A cellsB14N/AMutation(s): 0 
UniProt & NIH Common Fund Data Resources
Find proteins for P23025 (Homo sapiens)
Explore P23025 
Go to UniProtKB:  P23025
PHAROS:  P23025
Protein Feature View
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 10 
  • Selection Criteria: structures with the lowest energy 
  • OLDERADO: 2JNW Olderado

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2007-10-30
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance