2JAS

Structure of deoxyadenosine kinase from M.mycoides with bound dATP


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.7 Å
  • R-Value Free: 0.274 
  • R-Value Work: 0.233 

wwPDB Validation 3D Report Full Report


This is version 1.1 of the entry. See complete history

Literature

Structure-Function Analysis of a Bacterial Deoxyadenosine Kinase Reveals the Basis for Substrate Specificity.

Welin, M.Wang, L.Eriksson, S.Eklund, H.

(2007) J.Mol.Biol. 366: 1615

  • DOI: 10.1016/j.jmb.2006.12.010
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • Deoxyribonucleoside kinases (dNKs) catalyze the transfer of a phosphoryl group from ATP to a deoxyribonucleoside (dN), a key step in DNA precursor synthesis. Recently structural information concerning dNKs has been obtained, but no structure of a bac ...

    Deoxyribonucleoside kinases (dNKs) catalyze the transfer of a phosphoryl group from ATP to a deoxyribonucleoside (dN), a key step in DNA precursor synthesis. Recently structural information concerning dNKs has been obtained, but no structure of a bacterial dCK/dGK enzyme is known. Here we report the structure of such an enzyme, represented by deoxyadenosine kinase from Mycoplasma mycoides subsp. mycoides small colony type (Mm-dAK). Superposition of Mm-dAK with its human counterpart's deoxyguanosine kinase (dGK) and deoxycytidine kinase (dCK) reveals that the overall structures are very similar with a few amino acid alterations in the proximity of the active site. To investigate the substrate specificity, Mm-dAK has been crystallized in complex with dATP and dCTP, as well as the products dCMP and dCDP. Both dATP and dCTP bind to the enzyme in a feedback-inhibitory manner with the dN part in the deoxyribonucleoside binding site and the triphosphates in the P-loop. Substrate specificity studies with clinically important nucleoside analogs as well as several phosphate donors were performed. Thus, in this study we combine structural and kinetic data to gain a better understanding of the substrate specificity of the dCK/dGK family of enzymes. The structure of Mm-dAK provides a starting point for making new anti bacterial agents against pathogenic bacteria.


    Organizational Affiliation

    Department of Molecular Biology, Swedish University of Agricultural Sciences, Box 590, Biomedical Center, S-751 24 Uppsala, Sweden.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
DEOXYGUANOSINE KINASE
A, B, C, D, E, F
206Mycoplasma mycoides subsp. mycoides SCMutation(s): 0 
Gene Names: dGUOK
EC: 2.7.1.113
Find proteins for Q93IG4 (Mycoplasma mycoides subsp. mycoides SC)
Go to UniProtKB:  Q93IG4
Small Molecules
Ligands 2 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
DTP
Query on DTP

Download SDF File 
Download CCD File 
A, B, C, D, E, F
2'-DEOXYADENOSINE 5'-TRIPHOSPHATE
C10 H16 N5 O12 P3
SUYVUBYJARFZHO-RRKCRQDMSA-N
 Ligand Interaction
MG
Query on MG

Download SDF File 
Download CCD File 
A, B, C, D, E, F
MAGNESIUM ION
Mg
JLVVSXFLKOJNIY-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.7 Å
  • R-Value Free: 0.274 
  • R-Value Work: 0.233 
  • Space Group: C 1 2 1
Unit Cell:
Length (Å)Angle (°)
a = 190.845α = 90.00
b = 100.850β = 124.58
c = 109.486γ = 90.00
Software Package:
Software NamePurpose
MOSFLMdata reduction
PHASERphasing
REFMACrefinement
SCALAdata scaling

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2007-01-03
    Type: Initial release
  • Version 1.1: 2011-07-13
    Type: Advisory, Refinement description, Version format compliance