2J4G

Bacteroides thetaiotaomicron GH84 O-GlcNAcase in complex with n-butyl- thiazoline inhibitor


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.25 Å
  • R-Value Free: 0.284 
  • R-Value Work: 0.220 
  • R-Value Observed: 0.223 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.3 of the entry. See complete history


Literature

Analysis of Pugnac and Nag-Thiazoline as Transition State Analogues for Human O-Glcnacase: Mechanistic and Structural Insights Into Inhibitor Selectivity and Transition State Poise.

Whitworth, G.E.Macauley, M.S.Stubbs, K.A.Dennis, R.J.Taylor, E.J.Davies, G.J.Greig, I.R.Vocadlo, D.J.

(2007) J Am Chem Soc 129: 635

  • DOI: https://doi.org/10.1021/ja065697o
  • Primary Citation of Related Structures:  
    2J4G

  • PubMed Abstract: 

    O-GlcNAcase catalyzes the cleavage of beta-O-linked 2-acetamido-2-deoxy-beta-d-glucopyranoside (O-GlcNAc) from serine and threonine residues of post-translationally modified proteins. Two potent inhibitors of this enzyme are O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino-N-phenylcarbamate (PUGNAc) and 1,2-dideoxy-2'-methyl-alpha-d-glucopyranoso[2,1-d]-Delta2'-thiazoline (NAG-thiazoline). Derivatives of these inhibitors differ in their selectivity for human O-GlcNAcase over the functionally related human lysosomal beta-hexosamindases, with PUGNAc derivatives showing modest selectivities and NAG-thiazoline derivatives showing high selectivities. The molecular basis for this difference in selectivities is addressed as is how well these inhibitors mimic the O-GlcNAcase-stabilized transition state (TS). Using a series of substrates, ground state (GS) inhibitors, and transition state mimics having analogous structural variations, we describe linear free energy relationships of log(KM/kcat) versus log(KI) for PUGNAc and NAG-thiazoline. These relationships suggest that PUGNAc is a poor transition state analogue, while NAG-thiazoline is revealed as a transition state mimic. Comparative X-ray crystallographic analyses of enzyme-inhibitor complexes reveal subtle molecular differences accounting for the differences in selectivities between these two inhibitors and illustrate key molecular interactions. Computational modeling of species along the reaction coordinate, as well as PUGNAc and NAG-thiazoline, provide insight into the features of NAG-thiazoline that resemble the transition state and reveal where PUGNAc fails to capture significant binding energy. These studies also point to late transition state poise for the O-GlcNAcase catalyzed reaction with significant nucleophilic participation and little involvement of the leaving group. The potency of NAG-thiazoline, its transition state mimicry, and its lack of traditional transition state-like design features suggest that potent rationally designed glycosidase inhibitors can be developed that exploit variation in transition state poise.


  • Organizational Affiliation

    Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
HYALURONOGLUCOSAMINIDASE
A, B
715Bacteroides thetaiotaomicron VPI-5482Mutation(s): 0 
EC: 3.2.1.52 (PDB Primary Data), 3.2.1.169 (UniProt)
UniProt
Find proteins for Q89ZI2 (Bacteroides thetaiotaomicron (strain ATCC 29148 / DSM 2079 / JCM 5827 / CCUG 10774 / NCTC 10582 / VPI-5482 / E50))
Explore Q89ZI2 
Go to UniProtKB:  Q89ZI2
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ89ZI2
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 3 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
NB1
Query on NB1

Download Ideal Coordinates CCD File 
C [auth A],
F [auth B]
(3AR,5R,6S,7R,7AR)-5-(HYDROXYMETHYL)-2-PROPYL-5,6,7,7A-TETRAHYDRO-3AH-PYRANO[3,2-D][1,3]THIAZOLE-6,7-DIOL
C10 H17 N O4 S
QWOPEBCGKASVQP-QXOHVQIXSA-N
GOL
Query on GOL

Download Ideal Coordinates CCD File 
E [auth A],
H [auth B]
GLYCEROL
C3 H8 O3
PEDCQBHIVMGVHV-UHFFFAOYSA-N
ACT
Query on ACT

Download Ideal Coordinates CCD File 
D [auth A],
G [auth B]
ACETATE ION
C2 H3 O2
QTBSBXVTEAMEQO-UHFFFAOYSA-M
Binding Affinity Annotations 
IDSourceBinding Affinity
NB1 PDBBind:  2J4G Ki: 250 (nM) from 1 assay(s)
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.25 Å
  • R-Value Free: 0.284 
  • R-Value Work: 0.220 
  • R-Value Observed: 0.223 
  • Space Group: C 1 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 185.106α = 90
b = 51.711β = 100.11
c = 172.782γ = 90
Software Package:
Software NamePurpose
REFMACrefinement
DENZOdata reduction
SCALEPACKdata scaling
MOLREPphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2007-01-30
    Type: Initial release
  • Version 1.1: 2011-05-08
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2023-12-13
    Changes: Data collection, Database references, Other, Refinement description