2GQ1

Crystal Structure of Recombinant Type I Fructose-1,6-bisphosphatase from Escherichia coli Complexed with Sulfate Ions


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.45 Å
  • R-Value Free: 0.232 
  • R-Value Work: 0.219 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Novel Allosteric Activation Site in Escherichia coli Fructose-1,6-bisphosphatase.

Hines, J.K.Fromm, H.J.Honzatko, R.B.

(2006) J.Biol.Chem. 281: 18386-18393

  • DOI: 10.1074/jbc.M602553200

  • PubMed Abstract: 
  • Fructose-1,6-bisphosphatase (FBPase) governs a key step in gluconeogenesis, the conversion of fructose 1,6-bisphosphate into fructose 6-phosphate. In mammals, the enzyme is subject to metabolic regulation, but regulatory mechanisms of bacterial FBPas ...

    Fructose-1,6-bisphosphatase (FBPase) governs a key step in gluconeogenesis, the conversion of fructose 1,6-bisphosphate into fructose 6-phosphate. In mammals, the enzyme is subject to metabolic regulation, but regulatory mechanisms of bacterial FBPases are not well understood. Presented here is the crystal structure (resolution, 1.45A) of recombinant FBPase from Escherichia coli, the first structure of a prokaryotic Type I FBPase. The E. coli enzyme is a homotetramer, but in a quaternary state between the canonical R- and T-states of porcine FBPase. Phe(15) and residues at the C-terminal side of the first alpha-helix (helix H1) occupy the AMP binding pocket. Residues at the N-terminal side of helix H1 hydrogen bond with sulfate ions buried at a subunit interface, which in porcine FBPase undergoes significant conformational change in response to allosteric effectors. Phosphoenolpyruvate and sulfate activate E. coli FBPase by at least 300%. Key residues that bind sulfate anions are conserved among many heterotrophic bacteria, but are absent in FBPases of organisms that employ fructose 2,6-bisphosphate as a regulator. These observations suggest a new mechanism of regulation in the FBPase enzyme family: anionic ligands, most likely phosphoenolpyruvate, bind to allosteric activator sites, which in turn stabilize a tetramer and a polypeptide fold that obstructs AMP binding.


    Organizational Affiliation

    Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Fructose-1,6-bisphosphatase
A
332Escherichia coli (strain K12)Gene Names: fbp (fdp)
EC: 3.1.3.11
Find proteins for P0A993 (Escherichia coli (strain K12))
Go to UniProtKB:  P0A993
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
SO4
Query on SO4

Download SDF File 
Download CCD File 
A
SULFATE ION
O4 S
QAOWNCQODCNURD-UHFFFAOYSA-L
 Ligand Interaction
Modified Residues  1 Unique
IDChainsTypeFormula2D DiagramParent
MSE
Query on MSE
A
L-PEPTIDE LINKINGC5 H11 N O2 SeMET
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.45 Å
  • R-Value Free: 0.232 
  • R-Value Work: 0.219 
  • Space Group: I 2 2 2
Unit Cell:
Length (Å)Angle (°)
a = 45.590α = 90.00
b = 81.270β = 90.00
c = 170.100γ = 90.00
Software Package:
Software NamePurpose
AMoREphasing
REFMACrefinement
d*TREKdata scaling
CNSrefinement
CrystalCleardata reduction
PDB_EXTRACTdata extraction

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2006-05-02
    Type: Initial release
  • Version 1.1: 2008-05-01
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Derived calculations, Version format compliance