2GPQ

Cap-free structure of eIF4E suggests basis for its allosteric regulation


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 50 
  • Conformers Submitted: 10 
  • Selection Criteria: structures with the least restraint violations,structures with the lowest energy 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Cap-free structure of eIF4E suggests a basis for conformational regulation by its ligands.

Volpon, L.Osborne, M.J.Topisirovic, I.Siddiqui, N.Borden, K.L.

(2006) Embo J. 25: 5138-5149

  • DOI: 10.1038/sj.emboj.7601380

  • PubMed Abstract: 
  • The activity of the eukaryotic translation initiation factor eIF4E is modulated through conformational response to its ligands. For example, eIF4G and eIF4E-binding proteins (4E-BPs) modulate cap affinity, and thus physiological activity of eIF4E, by ...

    The activity of the eukaryotic translation initiation factor eIF4E is modulated through conformational response to its ligands. For example, eIF4G and eIF4E-binding proteins (4E-BPs) modulate cap affinity, and thus physiological activity of eIF4E, by binding a site distal to the 7-methylguanosine cap-binding site. Further, cap binding substantially modulates eIF4E's affinity for eIF4G and the 4E-BPs. To date, only cap-bound eIF4E structures were reported. In the absence of structural information on the apo form, the molecular underpinnings of this conformational response mechanism cannot be established. We report here the first cap-free eIF4E structure. Apo-eIF4E exhibits structural differences in the cap-binding site and dorsal surface relative to cap-eIF4E. Analysis of structure and dynamics of apo-eIF4E, and changes observed upon ligand binding, reveal a molecular basis for eIF4E's conformational response to these ligands. In particular, alterations in the S4-H4 loop, distal to either the cap or eIF4G binding sites, appear key to modulating these effects. Mutation in this loop mimics these effects. Overall, our studies have important implications for the regulation of eIF4E.


    Organizational Affiliation

    Department of Pathology and Cell Biology, Institute for Research in Immunology and Cancer, Université de Montréal, Pavillion Marcelle-Coutu, Chemin Polytechnique, Montréal, QC, Canada.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Eukaryotic translation initiation factor 4E
A
217Homo sapiensMutation(s): 0 
Gene Names: EIF4E (EIF4EL1, EIF4F)
Find proteins for P06730 (Homo sapiens)
Go to Gene View: EIF4E
Go to UniProtKB:  P06730
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 50 
  • Conformers Submitted: 10 
  • Selection Criteria: structures with the least restraint violations,structures with the lowest energy 
  • Olderado: 2GPQ Olderado

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2006-11-14
    Type: Initial release
  • Version 1.1: 2008-05-01
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Version format compliance