2GGV

Crystal structure of the West Nile virus NS2B-NS3 protease, His51Ala mutant


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.8 Å
  • R-Value Free: 0.228 
  • R-Value Work: 0.191 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Structural evidence for regulation and specificity of flaviviral proteases and evolution of the Flaviviridae fold.

Aleshin, A.E.Shiryaev, S.A.Strongin, A.Y.Liddington, R.C.

(2007) Protein Sci. 16: 795-806

  • DOI: 10.1110/ps.072753207
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • Pathogenic members of the flavivirus family, including West Nile Virus (WNV) and Dengue Virus (DV), are growing global threats for which there are no specific treatments. The two-component flaviviral enzyme NS2B-NS3 cleaves the viral polyprotein prec ...

    Pathogenic members of the flavivirus family, including West Nile Virus (WNV) and Dengue Virus (DV), are growing global threats for which there are no specific treatments. The two-component flaviviral enzyme NS2B-NS3 cleaves the viral polyprotein precursor within the host cell, a process that is required for viral replication. Here, we report the crystal structure of WNV NS2B-NS3pro both in a substrate-free form and in complex with the trypsin inhibitor aprotinin/BPTI. We show that aprotinin binds in a substrate-mimetic fashion in which the productive conformation of the protease is fully formed, providing evidence for an "induced fit" mechanism of catalysis and allowing us to rationalize the distinct substrate specificities of WNV and DV proteases. We also show that the NS2B cofactor of WNV can adopt two very distinct conformations and that this is likely to be a general feature of flaviviral proteases, providing further opportunities for regulation. Finally, by comparing the flaviviral proteases with the more distantly related Hepatitis C virus, we provide insights into the evolution of the Flaviviridae fold. Our work should expedite the design of protease inhibitors to treat a range of flaviviral infections.


    Organizational Affiliation

    Infectious and Inflammatory Disease Center, Burnham Institute for Medical Research, La Jolla, California 92037, USA.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
non-structural protein 2B
A
56West Nile virusMutation(s): 0 
Find proteins for P06935 (West Nile virus)
Go to UniProtKB:  P06935
Entity ID: 2
MoleculeChainsSequence LengthOrganismDetails
non-structural protein 3
B
185West Nile virusMutation(s): 1 
Find proteins for P06935 (West Nile virus)
Go to UniProtKB:  P06935
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.8 Å
  • R-Value Free: 0.228 
  • R-Value Work: 0.191 
  • Space Group: P 64
Unit Cell:
Length (Å)Angle (°)
a = 56.745α = 90.00
b = 56.745β = 90.00
c = 103.720γ = 120.00
Software Package:
Software NamePurpose
MOSFLMdata reduction
ADSCdata collection
PDB_EXTRACTdata extraction
REFMACrefinement
SHELXSphasing

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2007-03-27
    Type: Initial release
  • Version 1.1: 2008-05-01
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Version format compliance