2GAK

X-ray crystal structure of murine leukocyte-type Core 2 b1,6-N-acetylglucosaminyltransferase (C2GnT-L)


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.00 Å
  • R-Value Free: 0.221 
  • R-Value Work: 0.197 
  • R-Value Observed: 0.197 

wwPDB Validation 3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

X-ray Crystal Structure of Leukocyte Type Core 2 beta1,6-N-Acetylglucosaminyltransferase: Evidence for a covergence of metal ion independent glycosyltransferase mechanism.

Pak, J.E.Arnoux, P.Zhou, S.Sivarajah, P.Satkunarajah, M.Xing, X.Rini, J.M.

(2006) J Biol Chem 281: 26693-26701

  • DOI: 10.1074/jbc.M603534200
  • Primary Citation of Related Structures:  
    2GAK, 2GAM

  • PubMed Abstract: 
  • Leukocyte type core 2 beta1,6-N-acetylglucosaminyltransferase (C2GnT-L) is a key enzyme in the biosynthesis of branched O-glycans. It is an inverting, metal ion-independent family 14 glycosyltransferase that catalyzes the formation of the core 2 O-gl ...

    Leukocyte type core 2 beta1,6-N-acetylglucosaminyltransferase (C2GnT-L) is a key enzyme in the biosynthesis of branched O-glycans. It is an inverting, metal ion-independent family 14 glycosyltransferase that catalyzes the formation of the core 2 O-glycan (Galbeta1-3[GlcNAcbeta1-6]GalNAc-O-Ser/Thr) from its donor and acceptor substrates, UDP-GlcNAc and the core 1 O-glycan (Galbeta1-3GalNAc-O-Ser/Thr), respectively. Reported here are the x-ray crystal structures of murine C2GnT-L in the absence and presence of the acceptor substrate Galbeta1-3GalNAc at 2.0 and 2.7A resolution, respectively. C2GnT-L was found to possess the GT-A fold; however, it lacks the characteristic metal ion binding DXD motif. The Galbeta1-3GalNAc complex defines the determinants of acceptor substrate binding and shows that Glu-320 corresponds to the structurally conserved catalytic base found in other inverting GT-A fold glycosyltransferases. Comparison of the C2GnT-L structure with that of other GT-A fold glycosyltransferases further suggests that Arg-378 and Lys-401 serve to electrostatically stabilize the nucleoside diphosphate leaving group, a role normally played by metal ion in GT-A structures. The use of basic amino acid side chains in this way is strikingly similar to that seen in a number of metal ion-independent GT-B fold glycosyltransferases and suggests a convergence of catalytic mechanism shared by both GT-A and GT-B fold glycosyltransferases.


    Organizational Affiliation

    Department of Molecular, University of Toronto, Toronto, Ontario M5S 1A8, Canada.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
beta-1,6-N-acetylglucosaminyltransferaseAB391Mus musculusMutation(s): 0 
Gene Names: Gcnt1
EC: 2.4.1.102
Find proteins for Q09324 (Mus musculus)
Explore Q09324 
Go to UniProtKB:  Q09324
Protein Feature View
Expand
 ( Mouse scroll to zoom / Hold left click to move )
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
NAG
Query on NAG

Download CCD File 
A
2-acetamido-2-deoxy-beta-D-glucopyranose
C8 H15 N O6
OVRNDRQMDRJTHS-FMDGEEDCSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.00 Å
  • R-Value Free: 0.221 
  • R-Value Work: 0.197 
  • R-Value Observed: 0.197 
  • Space Group: C 1 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 126.779α = 90
b = 79.979β = 107.7
c = 104.971γ = 90
Software Package:
Software NamePurpose
SCALEPACKdata scaling
CNSrefinement
PDB_EXTRACTdata extraction
DENZOdata reduction
CNSphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

  • Deposited Date: 2006-03-09 
  • Released Date: 2006-07-11 
  • Deposition Author(s): Pak, J.E., Rini, J.M.

Revision History 

  • Version 1.0: 2006-07-11
    Type: Initial release
  • Version 1.1: 2008-05-01
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Non-polymer description, Version format compliance
  • Version 1.3: 2020-07-29
    Type: Remediation
    Reason: Carbohydrate remediation
    Changes: Data collection, Derived calculations, Structure summary