2FEJ

Solution structure of human p53 DNA binding domain.


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 50 
  • Conformers Submitted: 36 
  • Selection Criteria: structures with the least restraint violations 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Solution structure of p53 core domain: Structural basis for its instability

Perez-Canadillas, J.M.Tidow, H.Freund, S.M.Rutherford, T.J.Ang, H.C.Fersht, A.R.

(2006) Proc.Natl.Acad.Sci.Usa 103: 2109-2114

  • DOI: 10.1073/pnas.0510941103

  • PubMed Abstract: 
  • The 25-kDa core domain of the tumor suppressor p53 is inherently unstable and melts at just above body temperature, which makes it susceptible to oncogenic mutations that inactivate it by lowering its stability. We determined its structure in solutio ...

    The 25-kDa core domain of the tumor suppressor p53 is inherently unstable and melts at just above body temperature, which makes it susceptible to oncogenic mutations that inactivate it by lowering its stability. We determined its structure in solution using state-of-the-art isotopic labeling techniques and NMR spectroscopy to complement its crystal structure. The structure was very similar to that in the crystal but far more mobile than expected. Importantly, we were able to analyze by NMR the structural environment of several buried polar groups, which indicated structural reasons for the instability. NMR spectroscopy, with its ability to detect protons, located buried hydroxyl and sulfhydryl groups that form suboptimal hydrogen-bond networks. We mutated one such buried pair, Tyr-236 and Thr-253 to Phe-236 and Ile-253 (as found in the paralogs p63 and p73), and stabilized p53 by 1.6 kcal/mol. We also detected differences in the conformation of a mobile loop that might reflect the existence of physiologically relevant alternative conformations. The effects of temperature on the dynamics of aromatic residues indicated that the protein also experiences several dynamic processes that might be related to the presence of alternative hydrogen-bond patterns in the protein interior. p53 appears to have evolved to be dynamic and unstable.


    Organizational Affiliation

    Medical Research Council Centre for Protein Engineering, Medical Research Council Centre, Hills Road, Cambridge CB2 2QH, United Kingdom.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Cellular tumor antigen p53
A
204Homo sapiensMutation(s): 0 
Gene Names: TP53 (P53)
Find proteins for P04637 (Homo sapiens)
Go to Gene View: TP53
Go to UniProtKB:  P04637
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
ZN
Query on ZN

Download SDF File 
Download CCD File 
A
ZINC ION
Zn
PTFCDOFLOPIGGS-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 50 
  • Conformers Submitted: 36 
  • Selection Criteria: structures with the least restraint violations 
  • Olderado: 2FEJ Olderado

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2006-01-31
    Type: Initial release
  • Version 1.1: 2008-05-01
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Version format compliance