2ETT

Solution Structure of Human Sorting Nexin 22 PX Domain


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 20 
  • Selection Criteria: target function 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Solution structure of human sorting nexin 22.

Song, J.Zhao, K.Q.Newman, C.L.Vinarov, D.A.Markley, J.L.

(2007) Protein Sci 16: 807-814

  • DOI: https://doi.org/10.1110/ps.072752407
  • Primary Citation of Related Structures:  
    2ETT

  • PubMed Abstract: 

    The sorting nexins (SNXs) constitute a large group of PX domain-containing proteins that play critical roles in protein trafficking. We report here the solution structure of human sorting nexin 22 (SNX22). Although SNX22 has <30% sequence identity with any PX domain protein of known structure, it was found to contain the alpha/beta fold and compact structural core characteristic of PX domains. Analysis of the backbone dynamics of SNX22 by NMR relaxation measurements revealed that the two walls of the ligand binding cleft undergo internal motions: on the picosecond timescale for the beta1/beta2 loop and on the micro- to millisecond timescale for the loop between the polyproline motif and helix alpha2. Regions of the SNX22 structure that differ from those of other PX domains include the loop connecting strands beta1 and beta2 and the loop connecting helices alpha1 and alpha2, which appear to be more mobile than corresponding loops in other known structures. The interaction of dibutanoyl-phosphatidylinositol-3-phosphate (dibutanoyl-PtdIns(3)P) with SNX22 was investigated by an NMR titration experiment, which identified the binding site in a basic cleft and indicated that ligand binding leads only to a local structural rearrangement as has been found with other PX domains. Because motions in the loops are damped out when dibutanoyl-PtdIns(3)P binds, entropic effects could contribute to the lower affinity of SNX22 for this ligand compared to other PX domains.


  • Organizational Affiliation

    Center for Eukaryotic Structural Genomics, Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706-1544, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Sorting nexin-22128Homo sapiensMutation(s): 0 
Gene Names: SNX22
UniProt & NIH Common Fund Data Resources
Find proteins for Q96L94 (Homo sapiens)
Explore Q96L94 
Go to UniProtKB:  Q96L94
PHAROS:  Q96L94
GTEx:  ENSG00000157734 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ96L94
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 20 
  • Selection Criteria: target function 

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2005-11-15
    Type: Initial release
  • Version 1.1: 2008-05-01
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2022-03-09
    Changes: Database references, Derived calculations