Crystal structures of CbiL, a methyltransferase involved in anaerobic vitamin B biosynthesis, and CbiL in complex with S-adenosylhomocysteine--implications for the reaction mechanism.
Wada, K., Harada, J., Yaeda, Y., Tamiaki, H., Oh-Oka, H., Fukuyama, K.(2007) FEBS J 274: 563-573
- PubMed: 17229157 
- DOI: https://doi.org/10.1111/j.1742-4658.2006.05611.x
- Primary Citation of Related Structures:  
2E0K, 2E0N - PubMed Abstract: 
During anaerobic cobalamin (vitamin B12) biosynthesis, CbiL catalyzes methylation at the C-20 position of a cyclic tetrapyrrole ring using S-adenosylmethionine as a methyl group source. This methylation is a key modification for the ring contraction process, by which a porphyrin-type tetrapyrrole ring is converted to a corrin ring through elimination of the modified C-20 and direct bonding of C-1 to C-19. We have determined the crystal structures of Chlorobium tepidum CbiL and CbiL in complex with S-adenosylhomocysteine (the S-demethyl form of S-adenosylmethionine). CbiL forms a dimer in the crystal, and each subunit consists of N-terminal and C-terminal domains. S-Adenosylhomocysteine binds to a cleft between the two domains, where it is specifically recognized by extensive hydrogen bonding and van der Waals interactions. The orientation of the cobalt-factor II substrate was modeled by simulation, and the predicted model suggests that the hydroxy group of Tyr226 is located in close proximity to the C-20 atom as well as the C-1 and C-19 atoms of the tetrapyrrole ring. These configurations allow us to propose a catalytic mechanism: the conserved Tyr226 residue in CbiL catalyzes the direct transfer of a methyl group from S-adenosylmethionine to the substrate through an S(N)2-like mechanism. Furthermore, the structural model of CbiL binding to its substrate suggests the axial residue coordinated to the central cobalt of cobalt-factor II.
Organizational Affiliation: 
Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan. keiwada@bio.sci.osaka-u.ac.jp