2C1M

Nup50:importin-alpha complex


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.20 Å
  • R-Value Free: 0.254 
  • R-Value Work: 0.221 
  • R-Value Observed: 0.221 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Nup50/Npap60 Function in Nuclear Protein Import Complex Disassembly and Importin Recycling.

Matsuura, Y.Stewart, M.

(2005) EMBO J 24: 3681

  • DOI: 10.1038/sj.emboj.7600843
  • Primary Citation of Related Structures:  
    2C1T, 2C1M

  • PubMed Abstract: 
  • Nuclear import of proteins containing classical nuclear localization signals (NLS) is mediated by the importin-alpha:beta complex that binds cargo in the cytoplasm and facilitates its passage through nuclear pores, after which nuclear RanGTP dissocia ...

    Nuclear import of proteins containing classical nuclear localization signals (NLS) is mediated by the importin-alpha:beta complex that binds cargo in the cytoplasm and facilitates its passage through nuclear pores, after which nuclear RanGTP dissociates the import complex and the importins are recycled. In vertebrates, import is stimulated by nucleoporin Nup50, which has been proposed to accompany the import complex through nuclear pores. However, we show here that the Nup50 N-terminal domain actively displaces NLSs from importin-alpha, which would be more consistent with Nup50 functioning to coordinate import complex disassembly and importin recycling. The crystal structure of the importin-alpha:Nup50 complex shows that Nup50 binds at two sites on importin-alpha. One site overlaps the secondary NLS-binding site, whereas the second extends along the importin-alpha C-terminus. Mutagenesis indicates that interaction at both sites is required for Nup50 to displace NLSs. The Cse1p:Kap60p:RanGTP complex structure suggests how Nup50 is then displaced on formation of the importin-alpha export complex. These results provide a rationale for understanding the series of interactions that orchestrate the terminal steps of nuclear protein import.


    Organizational Affiliation

    MRC Laboratory of Molecular Biology, Cambridge, UK.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
IMPORTIN-ALPHA2 SUBUNITA424Mus musculusMutation(s): 0 
Gene Names: Kpna2Rch1
Find proteins for P52293 (Mus musculus)
Explore P52293 
Go to UniProtKB:  P52293
NIH Common Fund Data Resources
IMPC  MGI:103561
Protein Feature View
Expand
 ( Mouse scroll to zoom / Hold left click to move )
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 2
MoleculeChainsSequence LengthOrganismDetailsImage
NUCLEOPORIN 50 KDAB46Mus musculusMutation(s): 0 
Gene Names: Nup50Npap60
Find proteins for Q9JIH2 (Mus musculus)
Explore Q9JIH2 
Go to UniProtKB:  Q9JIH2
Protein Feature View
Expand
 ( Mouse scroll to zoom / Hold left click to move )
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.20 Å
  • R-Value Free: 0.254 
  • R-Value Work: 0.221 
  • R-Value Observed: 0.221 
  • Space Group: P 41 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 74.467α = 90
b = 74.467β = 90
c = 188.023γ = 90
Software Package:
Software NamePurpose
CNSrefinement
MOSFLMdata reduction
SCALAdata scaling
CNSphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2005-11-23
    Type: Initial release
  • Version 1.1: 2011-05-08
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance