2BYC

BlrB - a BLUF protein, dark state structure


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.9 Å
  • R-Value Free: 0.288 
  • R-Value Work: 0.232 

wwPDB Validation 3D Report Full Report


This is version 1.1 of the entry. See complete history

Literature

Structure of a Bacterial Bluf Photoreceptor: Insights Into Blue Light-Mediated Signal Transduction.

Jung, A.Domratcheva, T.Tarutina, M.Wu, Q.Ko, W.H.Shoeman, R.L.Gomelsky, M.Gardner, K.H.Schlichting, I.

(2005) Proc.Natl.Acad.Sci.USA 102: 12350

  • DOI: 10.1073/pnas.0500722102

  • PubMed Abstract: 
  • Light is an essential environmental factor, and many species have evolved the capability to respond to it. Blue light is perceived through three flavin-containing photoreceptor families: cryptochromes, light-oxygen-voltage, and BLUF (sensor of blue l ...

    Light is an essential environmental factor, and many species have evolved the capability to respond to it. Blue light is perceived through three flavin-containing photoreceptor families: cryptochromes, light-oxygen-voltage, and BLUF (sensor of blue light using flavin adenine dinucleotide, FAD) domain proteins. BLUF domains are present in various proteins from Bacteria and lower Eukarya. They are fully modular and can relay signals to structurally and functionally diverse output units, most of which are implicated in nucleotide metabolism. We present the high resolution crystal structure of the dark resting state of BlrB, a short BLUF domain-containing protein from Rhodobacter sphaeroides. The structure reveals a previously uncharacterized FAD-binding fold. Along with other lines of evidence, it suggests mechanistic aspects for the photocycle that is characterized by a red-shifted absorbance of the flavin. The isoalloxazine ring of FAD binds in a cleft between two helices, whereas the adenine ring points into the solvent. We propose that the adenine ring serves as a hook mediating the interaction with its effector/output domain. The structure suggests a unique photochemical signaling switch in which the absorption of light induces a structural change in the rim surrounding the hook, thereby changing the protein interface between BLUF and the output domain.


    Organizational Affiliation

    Max Planck Institute for Medical Research, Department of Biomolecular Mechanisms, Jahnstrasse 29, 69120 Heidelberg, Germany.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
BLUE-LIGHT RECEPTOR OF THE BLUF-FAMILY
A, B
137N/AMutation(s): 0 
Protein Feature View is not available: No corresponding UniProt sequence found.
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
FMN
Query on FMN

Download SDF File 
Download CCD File 
A, B
FLAVIN MONONUCLEOTIDE
RIBOFLAVIN MONOPHOSPHATE
C17 H21 N4 O9 P
FVTCRASFADXXNN-SCRDCRAPSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.9 Å
  • R-Value Free: 0.288 
  • R-Value Work: 0.232 
  • Space Group: P 21 21 21
Unit Cell:
Length (Å)Angle (°)
a = 36.600α = 90.00
b = 65.000β = 90.00
c = 106.900γ = 90.00
Software Package:
Software NamePurpose
XDSdata reduction
REFMACrefinement
XSCALEdata scaling
SHARPphasing

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2005-08-24
    Type: Initial release
  • Version 1.1: 2011-07-13
    Type: Refinement description, Version format compliance