2BBJ

Crystal structure of the CorA Mg2+ transporter


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 3.9 Å
  • R-Value Free: 0.406 
  • R-Value Work: 0.361 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Crystal structure of the CorA Mg2+ transporter

Lunin, V.V.Dobrovetsky, E.Khutoreskaya, G.Zhang, R.Joachimiak, A.Doyle, D.A.Bochkarev, A.Maguire, M.E.Edwards, A.M.Koth, C.M.

(2006) Nature 440: 833-837

  • DOI: 10.1038/nature04642
  • Primary Citation of Related Structures:  2BBH

  • PubMed Abstract: 
  • The magnesium ion, Mg2+, is essential for myriad biochemical processes and remains the only major biological ion whose transport mechanisms remain unknown. The CorA family of magnesium transporters is the primary Mg2+ uptake system of most prokaryote ...

    The magnesium ion, Mg2+, is essential for myriad biochemical processes and remains the only major biological ion whose transport mechanisms remain unknown. The CorA family of magnesium transporters is the primary Mg2+ uptake system of most prokaryotes and a functional homologue of the eukaryotic mitochondrial magnesium transporter. Here we determine crystal structures of the full-length Thermotoga maritima CorA in an apparent closed state and its isolated cytoplasmic domain at 3.9 A and 1.85 A resolution, respectively. The transporter is a funnel-shaped homopentamer with two transmembrane helices per monomer. The channel is formed by an inner group of five helices and putatively gated by bulky hydrophobic residues. The large cytoplasmic domain forms a funnel whose wide mouth points into the cell and whose walls are formed by five long helices that are extensions of the transmembrane helices. The cytoplasmic neck of the pore is surrounded, on the outside of the funnel, by a ring of highly conserved positively charged residues. Two negatively charged helices in the cytoplasmic domain extend back towards the membrane on the outside of the funnel and abut the ring of positive charge. An apparent Mg2+ ion was bound between monomers at a conserved site in the cytoplasmic domain, suggesting a mechanism to link gating of the pore to the intracellular concentration of Mg2+.


    Organizational Affiliation

    Department of Medical Biophysics, University of Toronto, 112 College Street, Toronto, Ontario M5G 1L6, Canada.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
divalent cation transport-related protein
A, B, D, E, F
354Thermotoga maritima (strain ATCC 43589 / MSB8 / DSM 3109 / JCM 10099)Gene Names: corA
Membrane protein
mpstruct
Group: 
TRANSMEMBRANE PROTEINS: ALPHA-HELICAL
Sub Group: 
CorA Superfamily Ion Transporters
Protein: 
CorA Mg2+ Transporter
Find proteins for Q9WZ31 (Thermotoga maritima (strain ATCC 43589 / MSB8 / DSM 3109 / JCM 10099))
Go to UniProtKB:  Q9WZ31
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 3.9 Å
  • R-Value Free: 0.406 
  • R-Value Work: 0.361 
  • Space Group: P 21 21 2
Unit Cell:
Length (Å)Angle (°)
a = 136.979α = 90.00
b = 173.181β = 90.00
c = 134.179γ = 90.00
Software Package:
Software NamePurpose
SCALEPACKdata scaling
PHASERphasing
HKL-2000data reduction
REFMACrefinement

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2005-12-13
    Type: Initial release
  • Version 1.1: 2008-05-01
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Version format compliance