1YYB

Solution structure of 1-26 fragment of human programmed cell death 5 protein


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 50 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

The N-terminal 26-residue fragment of human programmed cell death 5 protein can form a stable alpha-helix having unique electrostatic potential character.

Liu, D.Yao, H.Chen, Y.Feng, Y.Chen, Y.Wang, J.

(2005) Biochem J 392: 47-54

  • DOI: https://doi.org/10.1042/BJ20050688
  • Primary Citation of Related Structures:  
    1YYB

  • PubMed Abstract: 
  • PDCD5-(1-26) is a N-terminal 26-residue fragment of human PDCD5 (programmed cell death 5) protein. PDCD5 is an important novel protein that regulates both apoptotic and non-apoptotic programmed cell death. The conformation of PDCD5 protein is a stable helical core consisting of a triple-helix bundle and two dissociated terminal regions ...

    PDCD5-(1-26) is a N-terminal 26-residue fragment of human PDCD5 (programmed cell death 5) protein. PDCD5 is an important novel protein that regulates both apoptotic and non-apoptotic programmed cell death. The conformation of PDCD5 protein is a stable helical core consisting of a triple-helix bundle and two dissociated terminal regions. The N-terminal region is ordered and contains abundant secondary structure. Overexpression and purification of the N-terminal 26-residure fragment, PDCD5-(1-26), was performed in this study to better understand its tertiary structure. The spectroscopic studies using CD and hetero- and homo-nuclear NMR methods determine a stable alpha-helix formed by Asp3-Ala19 of PDCD5-(1-26). The N-terminal residues Asp3-Ala19 of PDCD5 were then affirmed to have the capacity to form a stable alpha-helix independently of the core of the protein. Analysis of the helical peptide of PDCD5-(1-26) indicates that the surface of this well-formed alpha-helix has a unique electrostatic potential character. This may provide an environment for the N-terminal alpha-helix of PDCD5 to serve as an independent functional entity of the protein. The apoptosis activity assay shows that the deletion of the N-terminal alpha-helix of PDCD5 significantly attenuates the apoptosis-promoting effects on HL-60 cells induced by serum withdrawal.


    Organizational Affiliation

    National Laboratory of Biomacromolecules, Center for Molecular Biology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
Programmed cell death protein 527Homo sapiensMutation(s): 0 
Gene Names: PDCD5TFAR19
UniProt & NIH Common Fund Data Resources
Find proteins for O14737 (Homo sapiens)
Explore O14737 
Go to UniProtKB:  O14737
PHAROS:  O14737
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupO14737
Protein Feature View
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 50 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2005-09-13
    Type: Initial release
  • Version 1.1: 2008-04-30
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2022-03-02
    Changes: Data collection, Database references, Derived calculations