Solution structure of the zinc finger domain of TFIIE alpha

Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 

wwPDB Validation   3D Report Full Report

This is version 1.4 of the entry. See complete history


A novel zinc finger structure in the large subunit of human general transcription factor TFIIE.

Okuda, M.Tanaka, A.Arai, Y.Satoh, M.Okamura, H.Nagadoi, A.Hanaoka, F.Ohkuma, Y.Nishimura, Y.

(2004) J Biol Chem 279: 51395-51403

  • DOI: https://doi.org/10.1074/jbc.M404722200
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 

    The zinc finger domain in the large subunit of TFIIE (TFIIEalpha) is phylogenetically conserved and is essential for transcription. Here, we determined the solution structure of this domain by using NMR. It consisted of one alpha-helix and five beta-strands, showing novel features distinct from previously determined zinc-binding structures. We created point mutants of TFIIEalpha in this domain and examined their binding abilities to other general transcription factors as well as their transcription activities. Four Zn(2+)-ligand mutants, in which each of cysteine residues at positions 129, 132, 154, and 157 was replaced by alanine, possessed no transcription activities on a linearized template, whereas, on a supercoiled template, interesting functional asymmetry was observed: although the C-terminal two mutants abolished transcription activity (<5%), the N-terminal two mutants retained about 20% activities. The N-terminal two mutants bound stronger to the small subunit of TFIIF than the wild type and the C-terminal two mutants were impaired in their binding abilities to the XPB subunits of TFIIH. These suggest that the structural integrity of the zinc finger domain is essential for the TFIIE function, particularly in the transition from the transcription initiation to elongation and the conformational tuning of this domain for appropriate positioning of TFIIF, TFIIH, and polymerase II would be needed depending on the situation and timing.

  • Organizational Affiliation

    Graduate School of Integrated Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.

Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Transcription initiation factor IIE, alpha subunit62Homo sapiensMutation(s): 0 
Gene Names: GTF2E1
UniProt & NIH Common Fund Data Resources
Find proteins for P29083 (Homo sapiens)
Explore P29083 
Go to UniProtKB:  P29083
PHAROS:  P29083
GTEx:  ENSG00000153767 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP29083
Sequence Annotations
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
Query on ZN

Download Ideal Coordinates CCD File 
B [auth A]ZINC ION
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 

Structure Validation

View Full Validation Report

Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2004-10-05
    Type: Initial release
  • Version 1.1: 2008-04-27
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2022-03-02
    Changes: Data collection, Database references, Derived calculations
  • Version 1.4: 2023-12-27
    Changes: Data collection