Selection Criteria: structures with acceptable covalent geometry, structures with favorable non-bond energy, structures with the least restraint violations, structures with the lowest energy 
Primary Citation of Related Structures:   1V92, 1VAZ
PubMed Abstract: 
p47 is a major adaptor molecule of the cytosolic AAA ATPase p97. The principal role of the p97-p47 complex is in regulation of membrane fusion events. Mono-ubiquitin recognition by p47 has also been shown to be crucial in the p97-p47-mediated Golgi membrane fusion events ...
p47 is a major adaptor molecule of the cytosolic AAA ATPase p97. The principal role of the p97-p47 complex is in regulation of membrane fusion events. Mono-ubiquitin recognition by p47 has also been shown to be crucial in the p97-p47-mediated Golgi membrane fusion events. Here, we describe the high-resolution solution structures of the N-terminal UBA domain and the central domain (SEP) from p47. The p47 UBA domain has the characteristic three-helix bundle fold and forms a highly stable complex with ubiquitin. We report the interaction surfaces of the two proteins and present a structure for the p47 UBA-ubiquitin complex. The p47 SEP domain adopts a novel fold with a betabetabetaalphaalphabeta secondary structure arrangement, where beta4 pairs in a parallel fashion to beta1. Based on biophysical studies, we demonstrate a clear propensity for the self-association of p47. Furthermore, p97 N binding abolishes p47 self-association, revealing the potential interaction surfaces for recognition of other domains within p97 or the substrate.
Organizational Affiliation: 
Department of Biological Sciences, Wolfson Laboratories, Imperial College London, South Kensington, London, UK.
Selection Criteria: structures with acceptable covalent geometry, structures with favorable non-bond energy, structures with the least restraint violations, structures with the lowest energy