Primary Citation of Related Structures:   1SUR
PubMed Abstract: 
Assimilatory sulphate reduction supplies prototrophic organisms with reduced sulphur for the biosynthesis of all sulphur-containing metabolites. This process is driven by a sequence of enzymatic steps involving phosphoadenylyl sulphate (PAPS) reductase. Thioredoxin is used as the electron donor for the reduction of PAPS to phospho-adenosine-phosphate (PAP) and sulphite ...
Assimilatory sulphate reduction supplies prototrophic organisms with reduced sulphur for the biosynthesis of all sulphur-containing metabolites. This process is driven by a sequence of enzymatic steps involving phosphoadenylyl sulphate (PAPS) reductase. Thioredoxin is used as the electron donor for the reduction of PAPS to phospho-adenosine-phosphate (PAP) and sulphite. Unlike most electron-transfer reactions, there are no cofactors or prosthetic groups involved in this reduction and PAPS reductase is one of the rare examples of an enzyme that is able to store two electrons. Determination of the structure of PAPS reductase is the first step towards elucidating the biochemical details of the reduction of PAPS to sulphite.
Organizational Affiliation: 
European Molecular Biology Laboratory, Structural Biology Programme, Heidelberg, Germany.