1N8M

Solution structure of Pi4, a four disulfide bridged scorpion toxin active on potassium channels


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 20 
  • Conformers Submitted: 10 
  • Selection Criteria: structures with the lowest energy 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Solution structure of Pi4, a short four-disulfide-bridged scorpion toxin specific of potassium channels.

Guijarro, J.I.M'Barek, S.Gomez-Lagunas, F.Garnier, D.Rochat, H.Sabatier, J.M.Possani, L.D.Delepierre, M.

(2003) Protein Sci 12: 1844-1854

  • DOI: 10.1110/ps.03186703
  • Primary Citation of Related Structures:  
    1N8M

  • PubMed Abstract: 
  • Pi4 is a short toxin found at very low abundance in the venom of Pandinus imperator scorpions. It is a potent blocker of K(+) channels. Like the other members of the alpha-KTX6 subfamily to which it belongs, it is cross-linked by four disulfide bonds. The synthetic analog (sPi4) and the natural toxin (nPi4) have been obtained by solid-phase synthesis or from scorpion venom, respectively ...

    Pi4 is a short toxin found at very low abundance in the venom of Pandinus imperator scorpions. It is a potent blocker of K(+) channels. Like the other members of the alpha-KTX6 subfamily to which it belongs, it is cross-linked by four disulfide bonds. The synthetic analog (sPi4) and the natural toxin (nPi4) have been obtained by solid-phase synthesis or from scorpion venom, respectively. Analysis of two-dimensional (1)H NMR spectra of nPi4 and sPi4 indicates that both peptides have the same structure. Moreover, electrophysiological recordings of the blocking of Shaker B K(+) channels by sPi4 (K(D) = 8.5 nM) indicate that sPi4 has the same blocking activity of nPi4 (K(D) = 8.0 nM), previously described. The disulfide bonds have been independently determined by NMR and structure calculations, and by Edman-degradation/mass-spectrometry identification of peptides obtained by proteolysis of nPi4. Both approaches indicate that the pairing of the half-cystines is (6)C-(27)C, (12)C-(32)C, (16)C-(34)C, and (22)C-(37)C. The structure of the toxin has been determined by using 705 constraints derived from NMR data on sPi4. The structure, which is well defined, shows the characteristic alpha/beta scaffold of scorpion toxins. It is compared to the structure of the other alpha-KTX6 subfamily members and, in particular, to the structure of maurotoxin, which shows a different pattern of disulfide bridges despite its high degree of sequence identity (76%) with Pi4. The structure of Pi4 and the high amounts of synthetic peptide available, will enable the detailed analysis of the interaction of Pi4 with K(+) channels.


    Related Citations: 
    • Two similar peptides from the venom of the scorpion Pandinus imperator, one highly effective blocker and the other inactive on K+ channels
      Olamendi-Portugal, T., Gomez-Lagunas, F., Gurrola, G.B., Possani, L.D.
      (1998) Toxicon 36: 759

    Organizational Affiliation

    Unité de RMN des Biomolécules (CNRS URA 2185), Dépt. de Biologie Structurale et Chimie, Institut Pasteur, 75724 Paris Cedex 15, France.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
Potassium channel blocking toxin 4A38N/AMutation(s): 0 
UniProt
Find proteins for P58498 (Pandinus imperator)
Explore P58498 
Go to UniProtKB:  P58498
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP58498
Protein Feature View
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 20 
  • Conformers Submitted: 10 
  • Selection Criteria: structures with the lowest energy 

Structure Validation

View Full Validation Report



Entry History 

Revision History  (Full details and data files)

  • Version 1.0: 2003-09-02
    Type: Initial release
  • Version 1.1: 2008-04-28
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2022-02-23
    Changes: Database references, Derived calculations