1KP5

Cyclic Green Fluorescent Protein


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.6 Å
  • R-Value Free: 0.256 
  • R-Value Work: 0.208 

wwPDB Validation 3D Report Full Report


This is version 1.3 of the entry. See complete history

Literature

Structure of cyclized green fluorescent protein.

Hofmann, A.Iwai, H.Hess, S.Pluckthun, A.Wlodawer, A.

(2002) Acta Crystallogr.,Sect.D 58: 1400-1406

  • DOI: 10.1107/S0907444902010454

  • PubMed Abstract: 
  • Crystals of cyclic green fluorescent protein (cGFP) engineered by the previously reported split intein technology [Iwai et al. (2001), J. Biol. Chem. 276, 16548-16554] were obtained and the structure was solved using molecular replacement. Although t ...

    Crystals of cyclic green fluorescent protein (cGFP) engineered by the previously reported split intein technology [Iwai et al. (2001), J. Biol. Chem. 276, 16548-16554] were obtained and the structure was solved using molecular replacement. Although the core of the protein can unambiguously be fitted from the first to the last residue of the genuine sequence, the electron density in the region of the linker peptide is rather poor owing to the high water content of the crystals. Therefore, it is concluded that this part of the protein is highly disordered in the present structure and is very flexible. This is supported by the absence of crystal contacts in the linker-peptide region and the fact that the core of the protein exhibits a very similar conformation to that known from other GFP structures, thereby not implicating any constraints arising from the presence of the artificial linker. Nevertheless, the density is consistent with the loop being intact, as confirmed by mass spectroscopy of dissolved crystals. The present structure contains an antiparallel cGFP dimer where the dimer interface is clearly different from other crystal structures featuring two GFP molecules. This adds further support to the fact that the cylinder surface of GFP is rather versatile and can employ various polar and non-polar patches in protein-protein interactions.


    Organizational Affiliation

    Macromolecular Crystallography Laboratory, NCI at Frederick, Frederick, MD 21702, USA. hofmanna@ncifcrf.gov




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Green Fluorescent Protein
A, B
248Aequorea victoriaMutation(s): 19 
Gene Names: GFP
Find proteins for P42212 (Aequorea victoria)
Go to UniProtKB:  P42212
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
SO4
Query on SO4

Download SDF File 
Download CCD File 
A, B
SULFATE ION
O4 S
QAOWNCQODCNURD-UHFFFAOYSA-L
 Ligand Interaction
Modified Residues  1 Unique
IDChainsTypeFormula2D DiagramParent
GYS
Query on GYS
A, B
L-PEPTIDE LINKINGC14 H15 N3 O5SER, TYR, GLY
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.6 Å
  • R-Value Free: 0.256 
  • R-Value Work: 0.208 
  • Space Group: P 65 2 2
Unit Cell:
Length (Å)Angle (°)
a = 142.447α = 90.00
b = 142.447β = 90.00
c = 183.809γ = 120.00
Software Package:
Software NamePurpose
SCALEPACKdata scaling
CNSrefinement
DENZOdata reduction
AMoREphasing

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2002-08-28
    Type: Initial release
  • Version 1.1: 2008-04-27
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Version format compliance
  • Version 1.3: 2015-01-21
    Type: Structure summary