1HED

STRUCTURAL CONSEQUENCES OF HYDROPHILIC AMINO-ACID SUBSTITUTIONS IN THE HYDROPHOBIC POCKET OF HUMAN CARBONIC ANHYDRASE II


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2 Å

wwPDB Validation 3D Report Full Report


This is version 1.3 of the entry. See complete history

Literature

Structural consequences of hydrophilic amino acid substitutions in the hydrophobic pocket of human carbonic anhydrase II.

Nair, S.K.Christianson, D.W.

(1993) Biochemistry 32: 4506-4514

  • Primary Citation of Related Structures:  1HEA, 1HEB, 1HEC

  • PubMed Abstract: 
  • The three-dimensional structures of Leu-198-->Glu, Leu-198-->His, Leu-198-->Arg, and Leu-198-->Ala variants of human carbonic anhydrase II (CAII) have each been determined by X-ray crystallographic methods to a resolution of 2.0 A. The side chain of ...

    The three-dimensional structures of Leu-198-->Glu, Leu-198-->His, Leu-198-->Arg, and Leu-198-->Ala variants of human carbonic anhydrase II (CAII) have each been determined by X-ray crystallographic methods to a resolution of 2.0 A. The side chain of Leu-198 is located at the mouth of the active site hydrophobic pocket, and this pocket is required for substrate association. Hydrophobic-->hydrophilic amino acid substitutions at the mouth of the pocket decrease kcat/KM for CO2 hydration: the CO2 hydrase activities of Leu-198-->Glu, Leu-198-->His, and Leu-198-->Arg CAIIs are diminished 19-fold, 10-fold, and 17-fold, respectively, relative to the wild-type enzyme; however, the substitution of a compact aliphatic side chain for Leu-198 has a smaller effect on catalysis, in that Leu-198-->Ala CAII exhibits only a 3-fold decrease in CO2 hydrase activity [Krebs, J. F., Rana, F., Dluhy, R. A., & Fierke, C. A. (1993) Biochemistry (preceding paper in this issue)]. It is intriguing that CO2 hydrase activity is not severely diminished in Leu-198-->Arg CAII, even though the side chain of Arg-198 blocks the hydrophobic pocket. Therefore, the bulky side chain of Arg-198 must be reasonably mobile in order to accommodate substrate association. Significantly, a residue larger than the wild-type Leu-198 side chain does not necessarily block the substrate association pocket; e.g., the side chain of Glu-198 packs against a hydrophobic patch, the net result of which is a wider mouth for the pocket.(ABSTRACT TRUNCATED AT 250 WORDS)


    Organizational Affiliation

    Department of Chemistry, University of Pennsylvania, Philadelphia 19104-6323.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
CARBONIC ANHYDRASE II
A
260Homo sapiensGene Names: CA2
EC: 4.2.1.1
Find proteins for P00918 (Homo sapiens)
Go to Gene View: CA2
Go to UniProtKB:  P00918
Small Molecules
Ligands 2 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
ZN
Query on ZN

Download SDF File 
Download CCD File 
A
ZINC ION
Zn
PTFCDOFLOPIGGS-UHFFFAOYSA-N
 Ligand Interaction
HG
Query on HG

Download SDF File 
Download CCD File 
A
MERCURY (II) ION
Hg
BQPIGGFYSBELGY-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2 Å
  • Space Group: P 1 21 1
Unit Cell:
Length (Å)Angle (°)
a = 42.700α = 90.00
b = 41.700β = 104.60
c = 73.000γ = 90.00
Software Package:
Software NamePurpose
PROLSQrefinement

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 1992-10-15
    Type: Initial release
  • Version 1.1: 2008-03-24
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Version format compliance
  • Version 1.3: 2017-11-29
    Type: Derived calculations, Other