1GPE

GLUCOSE OXIDASE FROM PENICILLIUM AMAGASAKIENSE


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.80 Å
  • R-Value Free: 0.198 
  • R-Value Work: 0.160 
  • R-Value Observed: 0.164 

wwPDB Validation 3D Report Full Report



Literature

1.8 and 1.9 A resolution structures of the Penicillium amagasakiense and Aspergillus niger glucose oxidases as a basis for modelling substrate complexes.

Wohlfahrt, G.Witt, S.Hendle, J.Schomburg, D.Kalisz, H.M.Hecht, H.J.

(1999) Acta Crystallogr D Biol Crystallogr 55: 969-977

  • DOI: 10.1107/s0907444999003431
  • Structures With Same Primary Citation

  • PubMed Abstract: 
  • Glucose oxidase is a flavin-dependent enzyme which catalyses the oxidation of beta-D-glucose by molecular oxygen to delta-gluconolactone and hydrogen peroxide. The structure of the enzyme from Aspergillus niger, previously refined at 2.3 A resolution ...

    Glucose oxidase is a flavin-dependent enzyme which catalyses the oxidation of beta-D-glucose by molecular oxygen to delta-gluconolactone and hydrogen peroxide. The structure of the enzyme from Aspergillus niger, previously refined at 2.3 A resolution, has been refined at 1.9 A resolution to an R value of 19.0%, and the structure of the enzyme from Penicillium amagasakiense, which has 65% sequence identity, has been determined by molecular replacement and refined at 1.8 A resolution to an R value of 16.4%. The structures of the partially deglycosylated enzymes have an r.m.s. deviation of 0.7 A for main-chain atoms and show four N-glycosylation sites, with an extended carbohydrate moiety at Asn89. Substrate complexes of the enzyme from A. niger were modelled by force-field methods. The resulting model is consistent with results from site-directed mutagenesis experiments and shows the beta-D-glucose molecule in the active site of glucose oxidase, stabilized by 12 hydrogen bonds and by hydrophobic contacts to three neighbouring aromatic residues and to flavin adenine dinucleotide. Other hexoses, such as alpha-D-glucose, mannose and galactose, which are poor substrates for the enzyme, and 2-deoxy-D-glucose, form either fewer bonds or unfavourable contacts with neighbouring amino acids. Simulation of the complex between the reduced enzyme and the product, delta-gluconolactone, has provided an explanation for the lack of product inhibition by the lactone.


    Organizational Affiliation

    Department of Enzymology, GBF - Gesellschaft für Biotechnologische Forschung mbH, Mascheroder Weg 1, D-38124 Braunschweig, Germany.



Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
PROTEIN (GLUCOSE OXIDASE)A, B587Penicillium amagasakienseMutation(s): 0 
EC: 1.1.3.4
Find proteins for P81156 (Penicillium amagasakiense)
Explore P81156 
Go to UniProtKB:  P81156
Protein Feature View
 ( Mouse scroll to zoom / Hold left click to move )
  • Reference Sequence
Oligosaccharides
Entity ID: 2
MoleculeChainsChain Length2D Diagram Glycosylation
alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose
C, E
5 N-Glycosylation
Entity ID: 3
MoleculeChainsChain Length2D Diagram Glycosylation
2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose
D, F
2 N-Glycosylation
Small Molecules
Ligands 2 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
FAD
Query on FAD

Download CCD File 
A, B
FLAVIN-ADENINE DINUCLEOTIDE
C27 H33 N9 O15 P2
VWWQXMAJTJZDQX-UYBVJOGSSA-N
 Ligand Interaction
NAG
Query on NAG

Download CCD File 
A, B
2-acetamido-2-deoxy-beta-D-glucopyranose
C8 H15 N O6
OVRNDRQMDRJTHS-FMDGEEDCSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.80 Å
  • R-Value Free: 0.198 
  • R-Value Work: 0.160 
  • R-Value Observed: 0.164 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 57.6α = 90
b = 132.1β = 90
c = 151.3γ = 90
Software Package:
Software NamePurpose
DENZOdata reduction
SCALEPACKdata scaling
MERLOTphasing
REFMACrefinement

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 1999-05-06
    Type: Initial release
  • Version 1.1: 2008-04-26
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Non-polymer description, Version format compliance
  • Version 2.0: 2020-07-29
    Type: Remediation
    Reason: Carbohydrate remediation
    Changes: Atomic model, Data collection, Derived calculations, Structure summary